Skip to main content
Log in

Emission of a Neutrino Pair During Transitions of an Electron in the Field of the Nucleus of a Hydrogen-Like Atom in One Spatial Dimension

  • Published:
Russian Physics Journal Aims and scope

The Dirac equation for a particle – an electron with negative charge equal in magnitude to the elementary charge e1 in spacetime with one spatial dimension denoted as the z axis and in the field of a point-like charge (Ze1) – the nucleus – with the one-dimensional potential φ1 = – (Ze1) |z| (a one-dimensional hydrogen-like atom) is solved. The two-component wave function and the quantum values of the energy are expressed in terms of the Airy function and its zeros. Using the contact Lagrangian of the weak interaction with Fermi constant G1 = g1ħc in such a space, where g1 is some number, the probability of emission per unit time of a neutrino pair (Ze1)*→(Ze1) + νν by the one-dimensional hydrogen-like atom, which turns out to be proportional to the square of the mass, is found. Prospects for the realization of the considered effect and its possible significance at various stages of the evolution of the Universe are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Random House, New York (2000).

    MATH  Google Scholar 

  2. A. Gorlitz et al., Phys. Rev. Lett., 87, 130402 (2001).

    Article  ADS  Google Scholar 

  3. V. V. Skobelev, Zh. Eksp. Teor. Fiz., 149, No. 2, 285; No. 4, 909 (2016).

  4. V. V. Skobelev, Russ. Phys. J., 59, No. 1, 48 (2016).

    Article  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Statistical Physics, Butterworth-Heinemann, London (1980).

    MATH  Google Scholar 

  6. N. D. Mermin and H. Wagner, Phys. Rev. Lett., 17, 1307 (1966).

    Article  ADS  Google Scholar 

  7. P. C. Hohenberg, Phys. Rev., 158, 383 (1967).

    Article  ADS  Google Scholar 

  8. V. V. Skobelev, Russ. Phys. J., 57, No. 8, 1038 (2014).

    Article  Google Scholar 

  9. N. J. Vilenkin, Special Functions and the Theory of Group Representation, American Mathematical Society (1968).

  10. G. A. Korn and T. M. Korn, Handbook in Mathematics [in Russian], Nauka, Moscow (1973).

    MATH  Google Scholar 

  11. V. V. Skobelev, Zh. Eksp. Teor. Fiz., 137, 241 (2010).

    Google Scholar 

  12. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory, Pergamon Press, Oxford (1971).

    Google Scholar 

  13. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions, Dover Books, Mineola, New York (1965).

    Google Scholar 

  14. V. V. Skobelev, Russ. Phys. J., 58, No. 2, 163 (2015).

    Article  Google Scholar 

  15. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett., 38, 1440 (1977).

    Article  ADS  Google Scholar 

  16. E. M. Lifshitz and L. P. Pitaevskii, Relativistic Quantum Theory, Part 2, Pergamon Press, Oxford (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Skobelev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 56–65, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skobelev, V.V. Emission of a Neutrino Pair During Transitions of an Electron in the Field of the Nucleus of a Hydrogen-Like Atom in One Spatial Dimension. Russ Phys J 61, 661–674 (2018). https://doi.org/10.1007/s11182-018-1446-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1446-y

Keywords

Navigation