Advertisement

Russian Physics Journal

, Volume 61, Issue 3, pp 469–483 | Cite as

Identification of Natural and Synthetic Diamonds from Their Optical Absorption and Cathodoluminescence Spectra

  • E. I. LipatovEmail author
  • A. G. Burachenko
  • S. M. Avdeev
  • V. F. Tarasenko
  • M. A. Bublik
Article
  • 23 Downloads

The optical absorption and cathodoluminescence spectra of nine diamond specimens are investigated at the temperatures 295 K and 82–295 K, respectively. By the presence of an N3a electron-vibrational system with a phonon-free line at 2.68 eV, six of them are identified as natural diamonds. By the presence of the electron-vibrational system at 2.56 eV and a structureless band at 2.54 eV, associated with nickel in the optical absorption and luminescence spectra, two specimens are identified as synthetic diamonds grown at high pressures and temperatures. By the presence of exciton luminescence at 5.271 eV and the absence of any spectral, impurity-related peculiarities, one of the specimens is identified as a synthetic diamond grown by the chemical vapor deposition. Based on the data obtained, a procedure is proposed for identifying natural and synthetic diamonds and determining a model scheme of the radiation-thermal treatment of the specimens.

Keywords

diamond optical absorption luminescence identification electron-vibrational system nitrogen aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Deljanin, M. Alessandri, A. Peretti, and M. Astrom, Contributions to Gemology, 15, 1–7 (2015).Google Scholar
  2. 2.
    E. Anoikin, A. Muhr, A. Bennett, D. J. Twitchen, et al., Proc. SPIE, 9346, 93460T P (2015).Google Scholar
  3. 3.
    W. Wang, T. M. Moses, and J. E. Shigley, Diamond and Related Mater., 12, 330–335 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Goss, B. J. Coomer, R. Jones, et al., Phys. Rev. B, 67, 165208 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Dobrinets, V. G. Vins, and A. M. Zaitsev, Springer Ser. Mater. Sci., 181, 1–270 (2013).CrossRefGoogle Scholar
  6. 6.
    P. P. Vecherin, V. V. Zhuravlev, V. B. Kvaskov, et al., Natural Diamonmds of Russia [in Russian], Polyaron, Moscow (1997).Google Scholar
  7. 7.
    G. B. Bokii, G. N. Bezrukov, Yu. A. Kluev, et al., Natural and Synthetic Diamonds (Ed. I. I. SWhafranovskii) [in Russian], Nauka, Moscow (1986).Google Scholar
  8. 8.
    A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook, Springer Verlag, Berlin (2001).CrossRefGoogle Scholar
  9. 9.
    B. V. Spitsyn, Zaschita metal., 43, No. 5, 456–474 (2007).Google Scholar
  10. 10.
    E. I. Lipatov, S. M. Avdeev, and V. F. Tarasenko, J. Lumin., 130, 2106–2112 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Tikhomirov and T. Kimstach, Analitika, 1, 28–32 (2011).Google Scholar
  12. 12.
    B. Deljanin, T. Hainschwang, E. Fritsch, et al., Abstract Book of De Beers Research Conference, 1–11, Warwick (2004).Google Scholar
  13. 13.
    E. I. Lipatov, V. M. Lisitsyn, V. I. Oleshko, et al., Cathodoluminescence (Ed. N. Yamamoto), InTech, Rijeka, Croatia (2012).Google Scholar
  14. 14.
    C. D. Clark, R. W. Ditchburn, and H. B. Dyer, Proc. R. Soc. London A, 234, 363–381 (1956).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. N. Palianov, Nauka iz Pervykh Ruk, 19, No. 1, 13–31 (2008).Google Scholar
  16. 16.
    E. I. Lipatov, D. E. Genin, and V. F. Tarasenko, Opt. and Spectr., 119, No. 6, 902–908 (2015).CrossRefGoogle Scholar
  17. 17.
    S. C. Lawson and H. Kanda, J. Appl. Phys., 73, No. 8, 3967–3973 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    E. I. Lipatov,. M. Lisitsyn, V. I. Oleshko, and V. F. Tarasenko, Russ. Phys. J., 50, No. 1, 52–57 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Walker, Rep. Prog. Phys., 42, 1607–1659 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    Synthetic Superhard Materials, Volume 1 (Ed. N. V. Novikov) [in Russian], Naukova Dumka, Kiev (1968).Google Scholar
  21. 21.
    J. Ruan, K. Kobashi, and W. J. Choyke, Appl. Phys. Lett., 60, No. 25, 3138–3140 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    D. Takeuchi, H. Watanabe, S. Yamanaka, et al., Phys. Rev. B, 63, 245328 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    P. J. Dean and I. H. Jones, Phys. Rev., 133, No. 6A, A1698–A1705 (1964).ADSCrossRefGoogle Scholar
  24. 24.
    D. R. Wight and P. J. Dean, Phys. Rev., 154, No. 3, 689–696 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    V. A. Nadolinnyi, O. P. Yurieva, A. P. Eliseev, et al., DAN, 399, No. 4, 532–536 (2004).Google Scholar
  26. 26.
    M. H. Nazare, P. W. Mason, G. D. Watkins, and H. Kanda, Phys. Rev. B, 51, No. 23, 16741–16745 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    T. Ardon, Gems and Gemology, 49, No. 3, 173–174 (2013).Google Scholar
  28. 28.
    E. A. Vasiliev, V. I. Ivanov-Omskii, B. S. Pomazanskii, and I. N. Bogush, JETP Lett., 30, Issue 19, 7–11 (2004).Google Scholar
  29. 29.
    T. G. Bilodeau, K. Doverspike, and U. Strom, Diamond and Related Mater., 2, 699–703 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    G. Davies, M. F. Thomaz, M. H. Nazare, et al., J. Phys. C, 20, L13–L17 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. I. Lipatov
    • 1
    Email author
  • A. G. Burachenko
    • 1
  • S. M. Avdeev
    • 1
  • V. F. Tarasenko
    • 1
  • M. A. Bublik
    • 2
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Dukhov All-Russian Institute of AutomationMoscowRussia

Personalised recommendations