Skip to main content

Advertisement

Log in

Capture and Emission of Charge Carriers by Quantum Well

  • Published:
Russian Physics Journal Aims and scope

A Correction to this article was published on 03 December 2018

This article has been updated

The interaction of electrons from the conduction band of the barrier layer of a LED heterostructure with the quantum well size-quantization level described by the capture time and emission time of charge carriers is considered. Relaxation of an excess energy upon capture and emission of charge carriers occurs as a result of their collisions with phonons of the quantum well substance and the “barrier layer-quantum well” interface. Analytical expressions are obtained for the interaction times, taking into account the depth of the sizequantization level, involved in the interaction with electrons, and the width of the well. Numerical estimates show that in real conditions, the capture time is shorter than the emission time, and this difference increases with increasing depth of the level. At shallow depths, the capture and emission times are comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 December 2018

    The last paragraph of the article should read “This work is performed with financial support of the Ministry of Education and Science of the Russian Federation within the framework of the federal target program “Research and development in priority areas of development of the scientific and technological complex of Russia for 2014-2020”, Unique identifier of the work (project) RFMEFI57717X0266.”

References

  1. Z. N. Sokolova, I. S. Tarasov, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 45, Vyp. 11, 1553–1559 (2011).

    Google Scholar 

  2. Z. N. Sokolova, I. S. Tarasov, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 46, Vyp. 11, 1067–1073 (2012).

    Google Scholar 

  3. Z. N. Sokolova, I. S. Tarasov, N. A. Pikhtin, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 49, Vyp. 11, 1553–1557 (2015).

    Google Scholar 

  4. Z. N. Sokolova, K. V. Bakhvalov, A. V. Lyutetskii, et. al., Fiz. Tekh. Poluprovodn., 50, Vyp. 5, 679–682 (2016).

    Google Scholar 

  5. A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett., 79, 3723 (2001).

    Article  ADS  Google Scholar 

  6. M. H. Kim, M. F. Schubert, Q. Dai, et al., Appl. Phys. Lett., 91, 183–507 (2007).

    Google Scholar 

  7. L. A. Pope, P. M. Smowton, P. Blood, et al., Appl. Phys. Lett., 83, 2755 (2003).

    Article  ADS  Google Scholar 

  8. D. Yan, H. Lu, D. Chen, et al., Appl. Phys. Lett., 95, 083 (2010).

    Google Scholar 

  9. N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, et al., Fiz. Tekh. Poluprovodn., 41, No. 1, 88–95 (2007).

    Google Scholar 

  10. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, et al., Fiz. Tekh. Poluprovodn., 46, Vyp. 8, 1054–1062 (2012).

    Google Scholar 

  11. D. Zhu, J. Xu, A. N. Noemaun, et al., Appl. Phys. Lett., 94, 081–113 (2009).

    Google Scholar 

  12. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, et al., Fiz. Tekh. Poluprovodn., 47, Vyp. 1, 129–136 (2013).

    Google Scholar 

  13. V. N. Abakumov V. I. Perel’, and I. N. Yassievich, Zh. Exp. Teor. Fiz., 72, 674–779 (1977).

    Google Scholar 

  14. V. Ya. Aleshkin and L. V. Gavrilrnko Fiz. Tekh. Poluprovodn., 51, Vyp. 11, 1498–1502 (2017).

    Google Scholar 

  15. A. Milns, Impurities with Deep Levels in Semiconductors, ed. M. K. Sheikman [Russian translation], Mir, Moscow (1977).

  16. E. F. Schubert, Light-Emitted Diodes, Cambridge (2006).

  17. J. Vungaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys., 89, Nо. 11, 5815–5875 (2001).

  18. V. I. Zubkov, Fiz. Tekh. Poluprovodn., 40, Vyp. 10, 1236–1241 (2006).

    Google Scholar 

  19. V. N. Davydov and D. A. Novikov, Dokl. TUSUR, Vyp. 1 (35), 64–73 (2015).

    Google Scholar 

  20. V. N. Davydov and A. N. Morgunov, Russ. Phys. J., 58, No. 11, 1619–1626 (2015).

    Article  Google Scholar 

  21. V. N. Davydov and D. A. Novikov, Russ. Phys. J., 58, No. 7, 987–995 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Davydov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 19–25, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.N., Karankevich, O.A. Capture and Emission of Charge Carriers by Quantum Well. Russ Phys J 61, 223–231 (2018). https://doi.org/10.1007/s11182-018-1389-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1389-3

Keywords

Navigation