Skip to main content
Log in

Special Features of Light Absorption by the Dimer of Bilayer Microparticles

  • Published:
Russian Physics Journal Aims and scope

Results of numerical simulation of light absorption by the dimer of bilayer spherical particles consisting of a water core and a polymer shell absorbing radiation are presented. The spatial distribution and the amplitude characteristics of the volume density of the absorbed power are investigated. It is shown that for a certain spatial dimer configuration, the maximal achievable density of the absorbed power is realized. It is also established that for closely spaced microcapsules with high shell absorption indices, the total power absorbed in the dimer volume can increase in comparison with the radiation absorption by two insulated microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Decher and J. D. Hong, Macromol. Chem. Sym., 46, 321–327 (1991).

    Article  Google Scholar 

  2. R. K. Iler, J. Colloid Interface Sci., 21, No. 6P, 569–594 (1966).

    Article  ADS  Google Scholar 

  3. V. I. Chueshov and N. E. Chernov, Industrial Technology of Medicines, Vol. 2 [in Russian], Publishing House of National University of Pharmacy, Kharkiv (2002).

    Google Scholar 

  4. Ya. V. Postrash and O. M. Khishova, Vestn. Farm., No. 2 (48), 1–7 (2010).

  5. A. S. Timin, H. Gao, D. V. Voronin, et al., Adv. Mater. Interfaces, 1600338 (2016); DOI: https://doi.org/10.1002/admi.201600338.

  6. Methods of Helicobacterpylori (НР) Diagnostics [Electronic Resource], Access Mode: http://vmede.org/ (reference date: 5/25/2014).

  7. A. S. Angelatos, B. Radt, and F. Caruso, J. Phys. Chem. B, 109, No. 7, 3071–3076 (2005).

    Article  Google Scholar 

  8. A. G. Skirtach, A. M. Javier, O. Kreft, et al., Angew. Chem. Int. Ed. Engl., 45, No. 28, 4612–4617 (2006).

    Article  Google Scholar 

  9. A. G. Skirtach, A. A. Antipov, D. G. Shchukin, and G. B. Sukhorukov, Langmuir, 20, No. 17, 6988–6992 (2004).

    Article  Google Scholar 

  10. H. Gao, D. Wen, N. V. Tarakina, et al., Nanoscale, 8, 5170–5180 (2016).

    Article  ADS  Google Scholar 

  11. Yu. E. Geints and A. A. Zemlyanov, J. Appl. Phys., 121, 123111 (2017).

    Article  ADS  Google Scholar 

  12. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, Quant. Electron., 46, No. 9, 815–820 (2016).

    Article  ADS  Google Scholar 

  13. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Arthech House Publ., Boston (2000).

    MATH  Google Scholar 

  14. M. Born and E. Volf, Principles of Optics [Russian translation], Nauka, Moscow (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. É. Geints.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 28–34, January, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.É., Panina, E.K. & Zemlyanov, A.A. Special Features of Light Absorption by the Dimer of Bilayer Microparticles. Russ Phys J 61, 29–35 (2018). https://doi.org/10.1007/s11182-018-1362-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1362-1

Keywords

Navigation