Russian Physics Journal

, Volume 60, Issue 12, pp 2155–2163 | Cite as

Mechanosynthesis of Precursors for TiC–Cu Cermets

  • M. A. Eremina
  • S. F. Lomaeva
  • I. N. Burnyshev
  • D. G. Kalyuzhnyi

The structural and phase state of the samples obtained by co-grinding of Ti and Cu powders under different conditions (with graphite, in petroleum ether, and in xylene) is investigated. It is demonstrated that after thermal treatment of powders obtained by milling of titanium, copper, and graphite in petroleum ether, both cubic titanium carbide and hexagonal titanium carbohydride are formed, whereas by milling without graphite, only hexagonal carbohydride possessing high thermal stability is formed. CuTi and CuTi2 intermetallic phases are formed under all examined conditions of mechanosynthesis.


mechanosynthesis TiC–Cu phase composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Kiparisov, Yu. V. Levinskii, and A. P. Petrov, Titanium Carbide: Synthesis, Properties, and Application [in Russian], Metallurgiya, Moscow (1987).Google Scholar
  2. 2.
    T. Suzuki and M. Nagumo, Scr. Metall. Mater., 27, 1413–1418 (1992).CrossRefGoogle Scholar
  3. 3.
    T. Suzuki and M. Nagumo, Scr. Metall. Mater., 32, No. 8, 1215–1220 (1995).CrossRefGoogle Scholar
  4. 4.
    K. Tokumitsu, Mater. Sci. Forum, 88–90, 715–722 (1992).CrossRefGoogle Scholar
  5. 5.
    M. Nagumo, T. Suzuki, and K. Tsuchida, Mater. Sci. Forum, 225–227, 581–586 (1996).CrossRefGoogle Scholar
  6. 6.
    A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Phases: A Handbook [in Russian], Khimiya, Leningrad (1983).Google Scholar
  7. 8.
    N. Zarrinfar, P. H. Shipway, A. R. Kennedy, and A. Saidi, Scripta Mater., 46, 121–126 (2002).CrossRefGoogle Scholar
  8. 9.
    M. R. Akbarpour and F. A. Hesari, Mater. Res. Express, No. 3, 045004 (2016).Google Scholar
  9. 10.
    M. Sherif El-Eskandarany, Metall. Mater. Trans. A, 27, 2374–2382 (1996).CrossRefGoogle Scholar
  10. 11.
    G. Rosas, N. Vargas, C. Patino-Carachure, et al., Revista Mexicana de Fízika, 55, No. 1, 114–117 (2009).Google Scholar
  11. 12.
    L. V. Zueva and A. I. Gusev, Fiz. Tverd. Tela, 41, No. 7, 1134–1141 (1999).Google Scholar
  12. 13.
    G. Tomé, B. Trindade, and M. T. Vieira, Vacuum. 64, 205–210 (2002).CrossRefGoogle Scholar
  13. 14.
    S. F. Lomaeva, I. V. Povstugar, V. A. Volkov, et al., Khim. Inter. Ust. Razv., 17, 629–639 (2009).Google Scholar
  14. 15.
    H. J. Goldschmidt, Interstitial Alloys, Vols. 1–2 [Russian translation], Mir, Moscow (1971).Google Scholar
  15. 16.
    I. Khidirov, ed., Neutron diffraction study of hydrogen thermoemission phenomenon from powder crystals, ISBN: 978-953-51-0307-3, InTech (2012) [Electronic resource]:
  16. 17.
    P. Yu. Butyagin, I. V. Berestetskaya, I. V. Kolbanev, and I. K. Pavlychev, Zh. Fiz. Khim., LX, No. 3, 579–584 (1986).Google Scholar
  17. 18.
    C. Muthazhagan, A. Gnanavelbabu, G. B. Bhaskar, and K. I. Rajkumar, Adv. Mater. Res., 845, 398–402 (2014).CrossRefGoogle Scholar
  18. 19.
    S. F. Lomaeva, Fiz. Met. Metalloved., 104, No. 4, 403–422 (2007).Google Scholar
  19. 20.
    H. Goretzki, H. Bittner, and H. Nowotny, Monatsh. Chem. Verw. Teile Anderer Wiss., 95, No. 6, 1521–1526 (1964).CrossRefGoogle Scholar
  20. 21.
    M. Makovec and Z. Ban, J. Less-Common Metals, 21, 169–180 (1970).CrossRefGoogle Scholar
  21. 22.
    G. Renaudin, K. Yvon, S. K. Dolukhanyan, et al., J. Alloys Compd., 356–357, 120–127 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. A. Eremina
    • 1
  • S. F. Lomaeva
    • 1
  • I. N. Burnyshev
    • 1
  • D. G. Kalyuzhnyi
    • 1
  1. 1.Udmurt Scientific Center of the Ural Branch of the Russian Academy of ScienceIzhevskRussia

Personalised recommendations