Skip to main content

Advertisement

Log in

First-Principles and Thermodynamic Simulation of Elastiс Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

  • Published:
Russian Physics Journal Aims and scope

Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe–H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Shtremel’, Strength of Alloys. Pt. II: Lattice Defects [in Russian], MISiS, Мoscow (1997).

    Google Scholar 

  2. G. Alefeld and J. Völkl (Eds.), Hydrogen in Metals [Russian translation], Mir, Мoscow (1981).

  3. Y. Fukai, The Metal-Hydrogen System. Heidelberg, Springer Verlag, Berlin (2005).

  4. P. V. Gel'd and R. A. Ryabov, Hydrogen in Metals and Alloys [in Russian], Metallurgiya, Мoscow (1974).

    Google Scholar 

  5. D. A. Mirzaev, A. D. Shaburov, and A. O. Chernyavskii, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Ser. Metallurgiya, 14, No. 3, 40–45 (2014).

    Google Scholar 

  6. K. Schwarz, P. Blaha, and G. K.H. Madsen, Comput. Phys. Commun., 147, 71–76 (2002).

    Article  ADS  Google Scholar 

  7. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  ADS  Google Scholar 

  8. C. Elsasser, J. Zhu, S. G. Louie, et al. J. Phys.: Cond. Matter, 10, 5081–5111 (1998).

    ADS  Google Scholar 

  9. D. E. Jiang and E. A. Carter, Phys. Rev. В, 70, 064102 (2004).

    Article  Google Scholar 

  10. M. A. Shtremel’, Strength of Alloys. Pt. II: Lattice Defects [in Russian], MISiS, Мoscow (1999)

    Google Scholar 

  11. J. C. M. Li, R. A. Oriani, and L. S. Darken, Z. Phys. Chem. Neue Folge, No. 49, 271–290 (5cy).

  12. D. A. Mirzaev, A. A. Mirzoev, I. V. Kashukov, and K. Yu. Okishev, Phys. Met. Metallogr., 108, No. 5, 496-503 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Rakitin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 76–82, December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakitin, M.S., Mirzoev, A.A. & Mirzaev, D.A. First-Principles and Thermodynamic Simulation of Elastiс Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron. Russ Phys J 60, 2136–2143 (2018). https://doi.org/10.1007/s11182-018-1337-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1337-2

Keywords

Navigation