Advertisement

Russian Physics Journal

, Volume 60, Issue 12, pp 2123–2129 | Cite as

On the Similarity of Deformation Mechanisms During Friction Stir Welding and Sliding Friction of the AA5056 Alloy

  • A. V. Kolubaev
  • A. A. Zaikina
  • O. V. Sizova
  • K. V. Ivanov
  • A. V. Filippov
  • E. A. Kolubaev
CONDENSED-STATE PHYSICS
  • 39 Downloads

A comparative investigation of the structure of an aluminum-manganese alloy is performed after its friction stir welding and sliding friction. Using the methods of optical and electron microscopy, it is shown that during friction identical ultrafine-grained structures are formed in the weld nugget and in the surface layer, in which the grains measure ~ 5 μm irrespective of the initial grain size of the alloy. An assumption is made that the microstructure during both processes under study is formed by the mechanism of rotational plasticity.

Keywords

friction stir welding plastic deformation plastic flow sliding friction microstructure fragmentation recrystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Mishra аnd Z. Y. Ma, Mater. Sci. Eng. R, 50, No. 1–2, 1–78 (2005).Google Scholar
  2. 2.
    O. V. Sizova, A. A. Zaikina, V. E. Rubtsov, and G. V. Shlyakhova, Izv. Vyssh. Uchebn. Zaved. Fiz., 58, No. 6/2, 248–263 (2015).Google Scholar
  3. 3.
    Yoon Tae-Jin, Yun Jung-Gil, and Kang Chung-Yun, Mater. & Design, 90, 568–578 (2016).CrossRefGoogle Scholar
  4. 4.
    T. K. McNelley and S. Swaminathan, Scr. Mater., 58, 349–354 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Zhang, M. Wang, W. Zhou, et al., Mater. & Design, 86, 379–387 (2015).CrossRefGoogle Scholar
  6. 6.
    W. Hana, D. Chenb, Y. Haa, et al., Scr. Mater., 105, 2–5 (2015).CrossRefGoogle Scholar
  7. 7.
    W. Tao, Z. Yong, L. Xuemei, and K. Matsuda, Mater. Sci. Eng. A, 671, 7–16 (2016).CrossRefGoogle Scholar
  8. 8.
    V. E. Panin, Russ. Phys. J., 41, No. 1, 7–34 (1998).CrossRefGoogle Scholar
  9. 9.
    N. Kumar, R. S. Mishra, G. S. Huskamp, and S. S. Sankatan, Mater. Sci. Eng. A, 528, 5883–5887 (2011).CrossRefGoogle Scholar
  10. 10.
    V. E. Rubtsov and A. V. Kolubaev, Tech. Phys., 49, 1457 (2004).CrossRefGoogle Scholar
  11. 11.
    A. V. Kolubaev, E. A. Kolubaev, O. V. Sizova, et al., J. Frict. Wear, 36, No. 2, 127–131 (2015).CrossRefGoogle Scholar
  12. 12.
    V. E. Panin, V. E. Egorushkin, and T. F. Elsukova, J. Phys. Mesomech., 14, No. 6, 5– 14 (2011).Google Scholar
  13. 13.
    N. F. Mott, Proc. Phys. Soc., 60, No 4, 391–394 (1948).ADSCrossRefGoogle Scholar
  14. 14.
    S. Q. Deng, A. Godfriey, W. Liu, and C. L. Zhang, Mater. Sci. Eng. A, 639, 448–455 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Török, S. Krishnamurty, J. Kertesz, and S. Roux, Phys. Rev. Lett., 84, No. 17, 3851 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    K. V. Ivanov and E. V. Naydenkin, Scr. Mater., 66, 511–514 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Kolubaev
    • 1
  • A. A. Zaikina
    • 1
  • O. V. Sizova
    • 1
  • K. V. Ivanov
    • 1
  • A. V. Filippov
    • 1
  • E. A. Kolubaev
    • 1
    • 2
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations