Advertisement

Russian Physics Journal

, Volume 60, Issue 12, pp 2105–2110 | Cite as

Calculation of the Ionization Coefficient in the Townsend Discharge in the Mixture of Argon and Mercury Vapors with Temperature-Dependent Composition

  • G. G. Bondarenko
  • M. S. Dubinina
  • M. R. Fisher
  • V. I. Kristya
PLASMA PHYSICS
  • 29 Downloads

For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon–mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.

Keywords

argon–mercury mixture Townsend discharge Penning ionization ionization coefficient discharge ignition voltage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Zissis and S. Kitsinelis, J. Phys. D, 42, No. 17, 173001 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases [in Russian], Nauka, Moscow (1991).Google Scholar
  3. 3.
    Yu. P. Raizer, Physics of a Gas Discharges [in Russian], Publishing House “Intellekt,” Dolgoprudnyi (2009).Google Scholar
  4. 4.
    S. Hadrath, M. Beck, R. C. Garner, et al., J. Phys. D, 40, No. 1, 163–167 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    A. Sobota, R. A. J. M. van den Bos, G. Kroesen, and F. Manders, J. Appl. Phys., 113, No. 4, 043308 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    B. Lay, R. S. Moss, S. Rauf, and M. J. Kushner, Plasma Sources Sci. Technol., 12, No. 1, 8–21 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    G. G. Bondarenko, M. R. Fisher, and V. I. Kristya, J. Phys. Conf. Ser., 406, 012031 (2012).CrossRefGoogle Scholar
  8. 8.
    G. G. Bondarenko, M. R. Fisher, and V. I. Kristya, Zh. Tekh. Fiz., 87, No. 2, 197–203 (2017).Google Scholar
  9. 9.
    V. Yu. Kozhevnikov, A. V. Kozyrev, and Yu. D. Korolev, Russ. Phys. J., 49, No. 2, 199–206 (2006).CrossRefGoogle Scholar
  10. 10.
    A. Venkattraman, Phys. Plasmas, 22, No. 5, 057102 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    I. K. Kikoin, ed., Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).Google Scholar
  12. 12.
    I. Korolov, M. Vass, and Z. Donkó, J. Phys. D, 49, No. 41, 415203 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Sawada, Y. Sakai, and H. Tagashira, J. Phys. D, 22, No. 2, 282–288 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    A. E. Ataev, Ignition of High-Pressure Mercury Discharge Radiation Sources [in Russian], Publishing House of Moscow Energy Institute, Moscow (1995).Google Scholar
  15. 15.
    J. Waymouth, Electric Discharge Lamps [Russian translation], Energiya, Moscow (1977).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. G. Bondarenko
    • 1
  • M. S. Dubinina
    • 2
  • M. R. Fisher
    • 2
  • V. I. Kristya
    • 2
  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Bauman State Technical University, Kaluga BranchKalugaRussia

Personalised recommendations