Bounded Hamiltonian in the Fourth-Order Extension of the Chern–Simons Theory

  • V. A. Abakumova
  • D. S. Kaparulin
  • S. L. Lyakhovich
Article
  • 4 Downloads

The problem of constructing alternative Hamiltonian formulations in the extended Chern–Simons theory with higher derivatives is considered. It is shown that the fourth-order extended theory admits a four-parameter series of alternative Hamiltonians which can be bounded from below, even if the canonical energy of the model is unbounded from below.

Keywords

theory with higher derivatives Ostrogradski instability extended Chern–Simons theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Townsend, K. Pilch, and P. van Nieuwenhuizen, Phys. Lett. B, 136, 38–42 (1984).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Deser and R. Jackiw, Phys. Lett. B, 139, 371–373 (1984).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Deser, R. Jackiw, and S. Templeton, Ann. Phys., 140, 372–411 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett., 48, 975–978 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    R. Banerjee, B. Chakraborty, and T. Scaria, Int. J. Mod. Phys. A, 16, 3967– 3989 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    S. Deser and B. Tekin, Class. Quant. Grav., 19, 97–100 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    T. Lee and G. Wick, Nucl. Phys. B, 9, 209–243 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    T. Lee and G. Wick, Phys. Rev. D, 2, 1033–1048 (1970).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Bolonek and P. Kosinski, Acta Phys. Polon. B, 36, 2115–2131 (2005).ADSGoogle Scholar
  10. 10.
    E. V. Damaskinsky and M. A. Sokolov, J. Phys. A, 39, 10499 (2006).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    D. S. Kaparulin, S. L. Lyakhovich, and A. A. Sharapov, Eur. Phys. J. C, 74, 3072 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    D. S. Kaparulin, S. L. Lyakhovich, and A. A. Sharapov, J. Math. Phys., 51, 082902 (2010).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. O. Kazinski, S. L. Lyakhovich, and A. A. Sharapov, J. High En. Phys., 0507, 076 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    D. S. Kaparulin, S. L. Lyakhovich, and A. A. Sharapov, J. Geom. Phys., 74, 164–184 (2013).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    D. S. Kaparulin, I.Yu. Karataeva, and S. L. Lyakhovich, Eur. Phys. J. C, 75, 552 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    D. S. Kaparulin, I.Yu. Karataeva, and S. L. Lyakhovich, Russ. Phys. J., 59, No. 11, 1930–1936 (2017).CrossRefGoogle Scholar
  17. 17.
    V. A. Abakumova, D. S. Kaparulin, and S. L. Lyakhovich, Eur. Phys. J. C, 78, 115 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Abakumova
    • 1
  • D. S. Kaparulin
    • 1
  • S. L. Lyakhovich
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations