Russian Physics Journal

, Volume 60, Issue 11, pp 2019–2024 | Cite as

Electric Current Transmission Through Tissues of the Vestibular Labyrinth of a Patient: Perfection of the Vestibular Implant

  • V. P. Demkin
  • P. P. Shchetinin
  • S. V. Melnichuk
  • H. Kingma
  • R. Van de Berg
  • M. O. Pleshkov
  • D. N. Starkov

An electric model of current transmission through tissues of the vestibular labyrinth of a patient is suggested. To stimulate directly the vestibular nerve in surgical operation, terminations of the electrodes are implanted through the bone tissue of the labyrinth into the perilymph in the vicinity of the vestibular nerve. The biological tissue of the vestibular labyrinth surrounding the electrodes and having heterogeneous composition possesses conductive and dielectric properties. Thus, when a current pulse from the vestibular implant is applied to one of the electrodes, conductive disturbance currents may arise between the electrodes and the vestibular nerves that can significantly deteriorate the direct signal quality. To study such signals and to compensate for the conductive disturbance currents, an equivalent electric circuit with actual electric impedance properties of tissues of the vestibular system is suggested, and the time parameters of the conductive disturbance current transmission are calculated. It is demonstrated that these parameters can reach large values. The suggested electric model and the results of calculations can be used for perfection of the vestibular implant.


electric current impedance of biological tissues electric model vestibular labyrinth vestibular implant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Van de Berg, M. Van Tilburg, and H. Kingma, J. Otorhinolaryngol. Relat. Spec., 77, 197–218 (2015).CrossRefGoogle Scholar
  2. 2.
    A. Lloret-Villas, T. M. Varusai, N. Juty, et al., Pharmacometrics Syst. Pharmacol., 6, 73–86 (2017).Google Scholar
  3. 3.
    T. A. Waigh, Applied Biophysics: A Molecular Approach for Physical Scientists, John Wiley & Sons, Ltd., Chichester (2007).CrossRefGoogle Scholar
  4. 4.
    W. Gong and D. M. Merfeld, Ann. Biomed. Eng., 28, 572–581 (2000).CrossRefGoogle Scholar
  5. 5.
    T. A. K. Nguyen, J. Digiovanna, S. Cavuscens, et al., J. Neural Eng., 13, No. 4, AN046023 (2016).Google Scholar
  6. 6.
    R. Van de Berg, N. Guinand, and T. A. K. Nguyen, Frontiers in System Neuroscience, 8, 1–12 (2012); DOI: Google Scholar
  7. 7.
  8. 8.
    V. V. Alexandrov, T. B. Alexandrova, R. Vega, et al., in: Proc. 4th WSEAS Int. Conf. on Mathematical Biology and Ecology MABE’ 08, Acapulco (2008), pp. 86–91.Google Scholar
  9. 9.
    V.V. Alexandrov, A. Almanza, N. V. Kulikovskaya, et al., in: Mathematical Modeling of Complex Information Processing Systems, Moscow University Press, Moscow (2001), pp. 26–41.Google Scholar
  10. 10.
    J.-P. Guyot, A. Sigrist, M. Pelizzone, and M. I. Kos, Ann. Biomed. Eng., 28, 572–581 (2000).CrossRefGoogle Scholar
  11. 11.
    D. Jiang, A. Demosthenous, T. A. Perkins, et al., IEEE Trans. Biomedical Circuits and Systems, 5, No. 2, 147–159 (2011).CrossRefGoogle Scholar
  12. 12.
    A. M. Shkel, J. Liu, C. Ikei, et al., First IEEE Int. Conf. on Sensors 2002, Orlando, Vol. 2 (2002), pp. 1526–1531.Google Scholar
  13. 13.
    A. Ramos-Miguel, A. Ramos-Macias, J. Viera Artiles, et al., J. Int. Adv. Otology, 11 (3), 222–228 (2015).CrossRefGoogle Scholar
  14. 14.
    A. L. Zuev, V. Yu. Mishlanov, A. I. Sudakov, et al., Ross. Zh. Biomekh., 18, No. 4, 491–497 (2012).Google Scholar
  15. 15.
    A. L. Zuev, V. Yu. Mishlanov, A. I. Sudakov, et al., Ross. Zh. Biomekh., 14, No. 3 (49), 68–78 (2010).Google Scholar
  16. 16.
    P. Wangemann, J. Physiol., 576, Pt. 1, 11–21 (2006).Google Scholar
  17. 17.
    W. D. Keidel and W. D. Neff, eds., Handbook of Sensory Physiology, Vol. V (1) (1975).Google Scholar
  18. 18.
    V. A. Sadovnichii, V. V. Aleksandrova, T. B. Aleksandrovna, et al., Moscow University Mechanics Bulletin, 63, No. 6, 139–145 (2008).CrossRefGoogle Scholar
  19. 19.
    T. D. Carter, G. Zupancic, S. M. Smith, et al., J. Physiol., 513.3, 845–855 (1998).CrossRefGoogle Scholar
  20. 20.
    J. Santos-Sacchi, Hear Res., 52 (1), 89–98 (1991).CrossRefGoogle Scholar
  21. 21.
    B. Garipcan, S. Maenz, and T. Pham, Adv. Eng. Mater., 13, Nos. 1–2, B54–B57 (2011).CrossRefGoogle Scholar
  22. 22.
    I. S. Curthoys and C. M. Oman, Acta Otolaryngol. (Stockh.), 103, 254–261 (1987).CrossRefGoogle Scholar
  23. 23.
    I. S. Curthoys, C. H. Markham, and E. J. Curthoys, J. Morphol., 151, 17–34 (1977).CrossRefGoogle Scholar
  24. 24.
    A. Puliafito, L. Primo, and A. Celani, J. R. Soc., Interface, 14 (134), 32 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. P. Demkin
    • 1
  • P. P. Shchetinin
    • 1
  • S. V. Melnichuk
    • 1
  • H. Kingma
    • 1
  • R. Van de Berg
    • 1
  • M. O. Pleshkov
    • 1
  • D. N. Starkov
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations