Advertisement

Russian Physics Journal

, Volume 60, Issue 11, pp 2007–2011 | Cite as

Quasilinear Relaxation as a Mechanism for Electron Temperature Saturation in the Earth’s Plasmasphere

  • A. A. Chernov
Article
  • 16 Downloads

A mechanism is presented according to which quasi-linear relaxation can cause electron temperature saturation at the observed level when the plasmasphere is heated by magnetohydrodynamic waves. An algorithm for calculating saturation temperatures is proposed, and they are numerically estimated. At low wave frequencies, saturation occurs at temperatures of 3–5 eV, and in the vicinity of cyclotron frequencies, it occurs at 2–4 eV.

Keywords

plasmasphere electrons Cherenkov heating MHD waves Coulomb collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Zelenyi, I. S. Veselovskii, G. A. Kotova, et al., Plasma Heliogeophysics, Vols. 1 and 2 [in Russian], Fizmatlit, Moscow (2008).Google Scholar
  2. 2.
    G. V. Khazanov, Kinetic Theory of the Inner Magnetospheric Plasma, Springer, New York (2011).CrossRefGoogle Scholar
  3. 3.
    A. I. Akhizier, I. A. Akhizier, R. V. Polovin, et al., in: Plasma Electrodynamics, A. I. Akhizier, ed. [in Russian], Nauka, Moscow (1974).Google Scholar
  4. 4.
    A. A. Chernov, New Mechanism of Electron Temperature Saturation in the Outer Earth’s Plasmasphere, Preprint No. 2, Publishing House of Altai State University, Barnaul (2006).Google Scholar
  5. 5.
    A. A. Chernov, G. V. Khazanov, and Yu. V. Konikov, Planet. Space Sci., 38, No. 7, 823–834 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Chernov, S. V. Tanygin, and G. V. Khazanov, Kosm. Issled., 32, No. 3, 102–107 (1994).Google Scholar
  7. 7.
    P. M. E. Decreau, C. Beghin, and M. Parrot, J. Geophys. Res., 87, No. A2, 695–712 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    A. Roux, S. Perraut, J. L. Rauch, et al., J. Geophys. Res., 87, No. A10, 8174–8190 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    J. La Belle, R. A. Treumann, W. Baumjohann, et al., J. Geophys. Res., 93, No. A4, 2573–2590 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    S. V. Tanygin, G. V. Khazanov, and A. A. Chernov, Geomagn. Aeronom., 31, No. 2, 324–328 (1991).ADSGoogle Scholar
  11. 11.
    K. V. Gamayunov, E. N. Krivorutsky, and G. V. Khazanov, Planet. Space Sci., 39, No. 8, 1097–1105 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    O. A. Gorbachev, G. V. Khazanov, K. V. Gamayunov, et al., Planet. Space Sci., 40, No. 6, 859–872 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    S. V. Tanygin, G. V. Khazanov, and A. A. Chernov, Geomagn. Aeronom., 34, No. 2, 182–184 (1994).Google Scholar
  14. 14.
    Yu. V. Konikov, O. A. Gorbachev, G. V. Khazanov, and A. A. Chernov, Planet. Space Sci., 37, No. 10, 1157–1168 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Altai State UniversityBarnaulRussia

Personalised recommendations