Advertisement

Russian Physics Journal

, Volume 60, Issue 11, pp 1993–1999 | Cite as

Thermal Stability of Microstructure and Microhardness of Heterophase BCC-Alloys After Torsional Deformation on Bridgman Anvils

  • I. A. Ditenberg
  • A. N. Tyumentsev
Article
  • 20 Downloads

The results of investigations of thermal stability of microstructure and microhardness of alloys of the V–4Ti–4Cr and Mo–47Re systems, subjected to torsional deformation by high quasi-hydrostatic pressure at room temperature, are reported. It is shown that submicrocrystalline and nanocrystalline states, and the respective high values of microhardness, persist up to the upper bound (~0.4 Тmelt) of the temperature interval of their recovery and polygonization in a single-phase state. The main factors ensuring thermal stability of highlydefective states in heterophase alloys are discussed.

Keywords

BCC-alloys based on vanadium and Mo–Re large plastic deformations high-pressure torsion microhardness transmission and scanning electron microscopy submicrocrystalline and nanocrystalline states thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation [in Russian], Logos, Moscow (2000).Google Scholar
  2. 2.
    Q. Wei, H. Zhang, B. E. Schuster, et al., Acta Mater., 54, Iss. 15, 4079–4089 (2006).CrossRefGoogle Scholar
  3. 3.
    V. V. Popov, G. P. Grabovetskaya, A. V. Sergeev, et al., Phys. Met. Metallogr., 109, No. 5, 556–562 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. R. Kolobov, B. Kieback, K. V. Ivanov, et al., Refract. Metals & Hard Mater., No. 21, 69–73 (2003).CrossRefGoogle Scholar
  5. 5.
    E. N. Popova, V. V. Popov, E. P. Romanov, et al., Phys. Met. Metallogr., 101, No. 1, 52 – 57 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Q. Wei, Z. L. Pan, X. L. Wu, et al., Acta Mater., 59, Iss. 6, 2423–2436 (2011).CrossRefGoogle Scholar
  7. 7.
    S. A. Vins, I. A. Ditenberg, A. N. Tyumentsev, and Korznikova, Izv. Vyssh. Uchebn. Zaved. Fiz., 52, 12/2 (2009).Google Scholar
  8. 8.
    I. A. Ditenberg, A. N. Tyumentsev, K. V. Grinyaev, et al., Tech. Phys., 56, Iss. 6, 815–820 (2011).CrossRefGoogle Scholar
  9. 9.
    I. A. Ditenberg, A. N. Tyumentsev, and A. V. Korznikov, Russ. Phys. J., 57, No. 12, 1683–1690 (2014).CrossRefGoogle Scholar
  10. 10.
    V. V. Popov, E. N. Popova, A. V. Stolbovskii, et al., Phys. Met. Metallogr., 113, No. 3, 295–301 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Tyumentsev, A. D. Korotaev, Yu. P. Pinzhin, et al., J. Nucl. Mater., 329333, 429–433 (2004).Google Scholar
  12. 12.
    V. V. Monako, A. N. Tyumentsev, A. D. Korotaev, et al., Fiz. Met. Metalloved., 78, No. 1, 152–161 (1994).Google Scholar
  13. 13.
    A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Zh. Fiz. Mezomekh., 16, No. 3, 63–79 (2013).Google Scholar
  14. 14.
    I. A. Ditenberg, A. N. Tyumentsev, A. V. Korznikov, et al., Phys. Met. Metallogr., 113, No. 2, 160–169 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    I. A. Ditenberg, S. A. Malakhova, A. N. Tyumentsev, and A. V. Korznikov, Persp. Mater., Spec. Iss. No. 12, 306–310 (2011).Google Scholar
  16. 16.
    A. N. Tyumentsev, I. A. Ditenberg, K. V. Grinyaev, et al., J. Nucl. Mater., 413, 103–106 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations