Russian Physics Journal

, Volume 60, Issue 11, pp 1980–1986 | Cite as

Physical Approaches to Designing a Two-Cascade Terahertz Laser Generating Difference-Frequency Radiation in a Nonlinear Optical ZnGeP2 Crystal

  • A. I. Gribenyukov
  • V. V. Dyomin
  • I. G. Polovtsev
  • N. N. Yudin

An optical layout of a two-cascade frequency converter of the mid-IR laser radiation into the terahertz (THz) radiation is proposed. In the first stage it is assumed to convert the Tm:YLF-laser frequency in a Cr+2:ZnSe polycrystal into the radiation with the wavelength ~2–3 μm. The second cascade can be presented as a parametric conversion of the frequencies of two laser sources operating in the ~2–3 μm range into the THz radiation via the difference-frequency mixing in a nonlinear optical ZnGeP2 crystal. The estimates of the terahertz output signal are reported.


nonlinear-parametric frequency conversion THz range difference frequency generator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Kh. Kitaeva, Laser Phys. Lett., 5, No. 8, 559–576 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    W. Shi and Y. J. Ding, Appl. Phys. Lett., 83, 848 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    T. Tanabe, K. Suto, J. Nishizawa, and T. Sasaki, J. Phys. D: Appl. Phys., 37, 155–158 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    C. Luo, K. Reimann, M. Woerner, and T. Elsaesser, Appl. Phys., A78, 435– 440 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    W. Shi and Y. J. Ding, Appl. Phys. Lett., 84, 1635–1637 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun., 233, 183–189 (2004).Google Scholar
  7. 7.
    Y. M. Andreev, V. Y. Baranov, V. G. Voevodin, et al., Kvant. Elektron., 14, 2252–2254 (1987).ADSGoogle Scholar
  8. 8.
    K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskii, Izv. Akad. Nauk SSSR. Ser. Fiz., 49, No. 3, 569–572 (1985).Google Scholar
  9. 9.
    N. P. Barnes, K. E. Murray, M. G. Jani, et al., J. Opt. Soc. Am., 15, 232–238 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    P. G. Schunemann, K. L. Schepler, and P. A. Budni, MRS Bull., 23, 45–49 (1998).CrossRefGoogle Scholar
  11. 11.
    P. A. Ketteridge, P. A. Budni, P. G. Schunemann, et al., OSA Trends in Optics and Photonics Series, 19, 233–235 (1998).Google Scholar
  12. 12.
    A. I. Gribenyukov, Oceanic Opt., 15, 61–68 (2002).Google Scholar
  13. 13.
    R. D. Peterson, K. L. Schepler, J. L. Brown, and P. G. Schunemann, J. Opt. Soc. Am., 12, 2142–2146 (1995).Google Scholar
  14. 14.
    Y. M. Andreev, V. G. Voevodin, P. P. Geiko, et al., Kvant. Elektron., 14, 2137–2138 (1987).ADSGoogle Scholar
  15. 15.
    H. P. Chou, R. C. Slater, and Y. Wang, Appl. Phys., 66, 555–559 (1998).CrossRefGoogle Scholar
  16. 16.
    P. G. Schunemann and T. M. Pollak, MRS Bull., 23, 23–27 (1998).CrossRefGoogle Scholar
  17. 17.
    P. A. Budni, L. A. Pomeranz, M. L. Lemons, et al., OSA Trends in Optics and Photonics Series, 19, 226–229 (1998).Google Scholar
  18. 18.
    N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, Kvant. Elektron., 40, No. 2, 98–100 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    Ren-Lai Zhou, You-Lun Ju, Wei Wang, et al., Chin. Phys. Lett., 28, No. 7, 074210 (2011).Google Scholar
  20. 20.
    A. V. Vladykin, O. N. Eremeikin, N. G. Zkharov, et al., Vestnik of Lobachevsky NNSU, No. 5, 85–87 (2011).Google Scholar
  21. 21.
    Daniel Creeden, John C. McCarthy, Peter A. Ketteridge, et al., Optics Expr., 15, No. 10, 6478–6483 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. I. Gribenyukov
    • 1
  • V. V. Dyomin
    • 2
  • I. G. Polovtsev
    • 2
  • N. N. Yudin
    • 2
  1. 1.Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations