Advertisement

Russian Physics Journal

, Volume 60, Issue 11, pp 1971–1979 | Cite as

Holographic Formation of Diffraction Elements for Transformation of Light Beams in Liquid Crystal – Photopolymer Compositions

  • A. O. Semkin
  • S. N. Sharangovich
Article
  • 23 Downloads

A theoretical model of holographic formation of diffractive optical elements for transformation of light beam field into Bessel-like fields in liquid crystal – photopolymer (LC–PPM) composite materials with a dyesensitizer is developed. Results of numerical modeling of kinetics ofvariation of the refractive index of a material in the process of formation with different relationships between the photopolymerization rates and diffusion processes are presented. Based on the results of numerical simulation, it is demonstrated that when the photopolarization process dominates, the diffractive element being formed is distorted. This leads to a change in the light field distribution at its output and consequently, to ineffective transformation of the reading beam. Thus, the necessity of optimizing of the recording conditions and of the prepolymeric composition to increase the transformation efficiency of light beam fields is demonstrated.

Keywords

photopolymers liquid crystals Bessel-like beams holography diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Sokolovskii, S. N. Losev, K. K. Soboleva, et al., Tech. Phys. Lett., 40, No. 6, 475–478 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    L. N. Pyatnitskii and V. V. Korobkin, Trudy Inst. Obshch. Fiz. Akad. Nauk, 57, 59–114 (2000).Google Scholar
  3. 3.
    S. N. Kurilkina and E. E. Ushakova, Vestn. Belorussk. Gosud. Univ. Ser. 1. Fiz. Mat. Inf., No. 13, 7–12 (2010).Google Scholar
  4. 4.
    A. Yu. Kostylev, I. V. Il’ina, T. Yu. Cherezova, et al., Atm. Ocean. Opt., 20, No. 11, 940–944 (2007).Google Scholar
  5. 5.
    A. A. Kazak, L. A. Kazak, A. L. Tolstik, et al., Vestn. Belorussk. Gosud. Univ. Ser. 1. Fiz. Mat. Inf., No. 1, 3–6 (2011).Google Scholar
  6. 6.
    E. S. Kovalenko, S. N. Sharangovich, V. V. Sysuev, et al., Proc. SPIE, 4513, 75–82 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    S. N. Sharangovich and E. A. Dovolnov, Proc. SPIE, 5129, 236–242 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Dovolnov, S. V. Ustyuzhanin, and S. N. Sharangovich, Russ. Phys. J., 49, No. 10, 1129–1138 (2006).CrossRefGoogle Scholar
  9. 9.
    Y. J. Liu and X. W. Sun, Adv. OptoElectron., Article ID 684349, 1–52 (2008);  https://doi.org/10.1155/2008/684349.
  10. 10.
    E. A. Dovolnov and S. N. Sharangovich, Russ. Phys. J., 48, No. 5, 501–510 (2005).CrossRefGoogle Scholar
  11. 11.
    E. A. Dovolnov and S. N. Sharangovich, Russ. Phys. J., 48, No. 7, 766–774 (2005).CrossRefGoogle Scholar
  12. 12.
    E. A. Dovolnov and S. N. Sharangovich, Proc. SPIE, 6023, 602301-1–602301-8 (2005).Google Scholar
  13. 13.
    E. A. Dovolnov, V. G. Mirgorod, E. F. Pen, et al., Russ. Phys. J., 50, No. 4, 342–348 (2007).CrossRefGoogle Scholar
  14. 14.
    A. O. Semkin and S. N. Sharangovich, Uchen. Zap. Fiz. Fak. Mosk. Univ., No. 5, 165306 (2016).Google Scholar
  15. 15.
    A. O. Semkin, S. N. Sharangovich, E. V. Vasil’ev, et al., Proc. TUSUR, 20, No. 1, 29–32 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations