Russian Physics Journal

, Volume 60, Issue 11, pp 1955–1960 | Cite as

The Effect of External Magnetic Field on Dielectric Permeability of Multiphase Ferrofluids

  • O. A. Dotsenko
  • A. A. Pavlova
  • V. S. Dotsenko

Nowadays, ferrofluids are applied in various fields of science and technology, namely space, medicine, geology, biology, automobile production, etc. In order to investigate the feasibility of applying ferrofluids in magnetic field sensors, the paper presents research into the influence of the external magnetic field on dielectric permeability of ferrofluids comprising magnetite nanopowder, multiwall carbon nanotubes, propanetriol and deionized water. The real and imaginary parts of the dielectric permeability change respectively by 3.7 and 0.5% when applying the magnetic field parallel to the electric. The findings suggest that the considered ferrofluid can be used as a magnetic level gauge or in design of variable capacitors.


ferrofluid dielectric permeability magnetic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kaiser and R. E. Rosensweig, Study of Ferromagnetic Liquid, AVCO Corp., Lowell (1969).Google Scholar
  2. 2.
    V. V. Sokolov, K. N. Fotov, and P. A. Eminov, Russ. Phys. J., 53, No. 7, 732–737 (2010).CrossRefGoogle Scholar
  3. 3.
    M. Goharkhah, A. Salariana, M. Ashjaee, and M. Shahabadi, Powder Technol., 274, 258–267 (2015).CrossRefGoogle Scholar
  4. 4.
    L. J. Felicia and J. Philip, Am. Chem. Soc., 31, 3343–3353 (2015).Google Scholar
  5. 5.
    B. Yiwang, J. Danyu, T. Li, and G. Jianghong, Key Eng. Mater., 492, 287–290 (2011).CrossRefGoogle Scholar
  6. 6.
    V. I. Fertman, Magnetic Fluids [in Russian], Vysshaya shkola, Minsk (1988).Google Scholar
  7. 7.
    P. K. Mukherjee, J. Mol. Liquids, 206, 207–212 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Zhu, R. Cheng, Y. Liu, et al., Microfluid. Nanofluid, 17, 973–982 (2014).CrossRefGoogle Scholar
  9. 9.
    I., Andreu E. Natividad, L. Solozábal, and O. Roubeau, JMMM, 380, 341–346 (2015).Google Scholar
  10. 10.
    R. Turcu, I. Craciunescu, V. M. Gramus, et al., JMMM, 380, 307–314 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Eremin and A. A. Drozdov, Nanochemistry and Nanotechnologies [in Russian], Drofa, Moscow (2009).Google Scholar
  12. 12.
    L. S. Mkrtchyan, A. R. Zakinyan, A. F. Golota, and V. M. Ishchenko, Politematich. Set. Elektron. Nauch. Zh. Kuban. Gos. Agrarn. Univ., No. 75(01), 1–12 (2012).Google Scholar
  13. 13.
    Multiwall carbon nanotubes [in Russian]. Available at: Last visited May 2015.
  14. 14.
    R. Bhavsar, N. Y. Vaidya, P. Ganguly, et al., Oilfield Review, 20, No. 1, 38–49 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. A. Dotsenko
    • 1
  • A. A. Pavlova
    • 1
  • V. S. Dotsenko
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations