Advertisement

Russian Physics Journal

, Volume 60, Issue 11, pp 1946–1954 | Cite as

Magnetic Properties and Structural Characteristics of BaFe12O19 Hexaferrites Synthesized by the Zol-Gel Combustion

  • V. A. Zhuravlev
  • V. I. Itin
  • R. V. Minin
  • Yu. M. Lopushnyak
  • D. A. Velikanov
Article

The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°С for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.

Keywords

zol-gel combustion method nanostructured hexaferrites magnetization curve saturation magnetization ferromagnetic resonance magnetocrystalline anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Pullar, Prog. Mater. Sci., 57, 1191–1334 (2012).CrossRefGoogle Scholar
  2. 2.
    J. Smit and H. P. J. Wijn, Ferrites [Russian translation], Inostrannaya Literatura, Moscow (1958).Google Scholar
  3. 3.
    E. P. Naiden, V. A. Zhuravlev, R. V. Minin, et al., Russ. Phys. J., 58, No. 1, 125–132 (2015).CrossRefGoogle Scholar
  4. 4.
    D. A. Velikanov, Vestn. SibGAU, No. 1 (53), 147–154 (2014).Google Scholar
  5. 5.
    F. J. Morin, Phys. Rev., 78, No. 6, 819 – 820 (1950).ADSCrossRefGoogle Scholar
  6. 6.
    E. C. Stoner and E. P. Wohlfart, IEEE Trans. Magn., 27, No. 4, 3475–3518 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Usp. Khim., 74, 539–574 (2005).CrossRefGoogle Scholar
  8. 8.
    E. Schlömann, J. Phys. Chem. Solids, 6, 257–266 (1958).Google Scholar
  9. 9.
    E. Schlömann and R. V. Jones, J. Appl. Phys., 30, S177–S178 (1959).Google Scholar
  10. 10.
    V. A. Zhuravlev, Fiz. Tverd. Tela, 41, No. 6, 1050–1053 (1999).Google Scholar
  11. 11.
    V. A. Zhuravlev and V. A. Meshcheryakov, Russ. Phys. J., 56, No. 12, 1387–1397 (2013).CrossRefGoogle Scholar
  12. 12.
    E. P. Naiden, V. A. Zhuravlev, V. I. Itin, et al., Russ. Phys. J., 55, No. 8, 869–877 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Zhuravlev
    • 1
  • V. I. Itin
    • 2
  • R. V. Minin
    • 2
  • Yu. M. Lopushnyak
    • 1
  • D. A. Velikanov
    • 3
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Department of Structural Macrokinetics of the Tomsk Scientific Center of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.L. V. Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations