Advertisement

Russian Physics Journal

, Volume 60, Issue 11, pp 1924–1930 | Cite as

Synthesis and Magnetic Properties of Fe–Co–Ni/С Nanocomposites

  • D. G. Muratov
  • L. V. Kozhitov
  • D. Yu. Karpenkov
  • E. V. Yakushko
  • E. Yu. Korovin
  • A. V. Vasil’ev
  • A. V. Popkova
  • T. M. Kazaryan
  • A. V. Shadrinov
Article

Nanoparticles of the Fe–Co–Ni ternary alloy, encapsulated in the carbon matrix of nanocomposites, have been synthesized, The structure, phase composition, and magnetic properties of the obtained materials have been determined with the help of diffractometry and magnetometry. It has been established that nanoparticles of the ternary alloy are formed due to solution of cobalt in the Fe–Ni alloy. The composition of the nanoparticles of the alloy depends on the mass percent ratio of the metas in the precursor. With growth of the iron content, nanoparticles of the ternary alloy with various composition are formed with FCC and BCC crystal lattice structure. As the synthesis temperature and relative iron content are increased, the magnetization of the Fe–Co–Ni/C nanocomposites increases from 26 to 157 A·m2/kg. The coercive force is determined by the synthesis temperature, the size of the nanoparticles, and the composition of the alloy, and its value varies from 330 to 43 Oe.

Keywords

Fe–Со–Ni nanoparticles metal–carbon nanocomposites saturation magnetization coercive force squareness ratio IR heating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Gubin, Y. I. Spichkin, G. Yu. Yurkov, and A. M. Tishin, Russ. J. Inorg. Chem., 47, S32–S67 (2002).Google Scholar
  2. 2.
    A. Hui Lu, E. L. Salabas, and F. Schüth, Angew. Chem. Int. Ed., 46, 1222–1244 (2007).CrossRefGoogle Scholar
  3. 3.
    Y. H. Xu, J. Bai, and J. P. Wang, J. Magn. Magn. Mater., 311, 131–134 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    S. N. Khadzhiev, M. V. Kulikova, M. I. Ivantsov, et al., Petrol. Chem., 56, 522– 528 (2016).CrossRefGoogle Scholar
  5. 5.
    M. H. Xu, W. Zhong, X. S. Qi, et al., J. Alloy Compounds, 495, No. 1, 200–220 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Bahgat, Paek Min-Kyu, and Pak Jong-Jin, J. Alloys Comp., 466, No. 1–2, 59–66 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Azizi, H.Yoozbashizadeh, and S. K. Sadrnezhaad, J. Magn. Magn. Mater., 321, 2729– 2732 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    X. Li and S. Takahashi, J. Magn. Magn. Mater., 214, 195–203 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    S. B. Dalavia, J. Theerthagiria, M. M. Rajab, and R. N. Panda, J. Magn. Magn. Mater., 344, 30–34 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    N. Kr. Prasad and V. Kumar, J. Mater. Sci: Mater. Electron., 26, 10109–10118 (2015).Google Scholar
  11. 11.
    K. Zehani, R. Bez, A. Boutahar, et al., J. Alloys Comp., 591, 58–64 (2014).CrossRefGoogle Scholar
  12. 12.
    Yong Yang, Caing Xu, Xogxin Xia, et al., J. Alloys Comp., 493, 549– 552 (2010).Google Scholar
  13. 13.
    X. G. Liu, Z. Q. Ou, D. Y. Geng, et al., Carbon, 48, 891–897 (2010).CrossRefGoogle Scholar
  14. 14.
    N. Poudyal, G. S. Chaubey, C.-B. Rong, et al., Nanotechnology, 24, 345605 (2013).CrossRefGoogle Scholar
  15. 15.
    E. V. Yakushko, L. V. Kozhitov, D. G. Muratov, and V. G. Kostishin, Russ. J. Inorgan. Chem., 61, No. 12, 1591–1595 (2016).CrossRefGoogle Scholar
  16. 16.
    L. V. Kozitov, M. F. Bulatov, D. G. Muratov, et al., J. Nanoelectron. Optoelectron., 9, No. 6, 823–827 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Yu. Karpenkov, D. G. Muratov, L. V. Kozitov, et al., J. Magn. Magn. Mater., 429, 94– 101 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    D. G. Muratov, L. V. Kozhitov, S. G. Emelyanov, et al., J. Nano- Electron. Phys., 8, No. 3, 03037–03040 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. G. Muratov
    • 1
    • 2
  • L. V. Kozhitov
    • 1
  • D. Yu. Karpenkov
    • 3
  • E. V. Yakushko
    • 1
  • E. Yu. Korovin
    • 4
  • A. V. Vasil’ev
    • 1
    • 2
  • A. V. Popkova
    • 3
  • T. M. Kazaryan
    • 1
  • A. V. Shadrinov
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.A. V. Тorchiev Institute of Petrochemical Synthesis of the Russian Academy of SciencesMoscowRussia
  3. 3.Tver’ State UniversityTver’Russia
  4. 4.National Research Tomsk State UniversityTomskRussia

Personalised recommendations