Investigation of Backward Reflection from Aqueous Media at Arbitrary Grazing Angles


A model of backward reflection is presented which is distinguished by the fact that it takes account of excitation of counterpropagating waves in bounding media. For the case of a homogeneous aqueous medium, it is shown that the proposed model describes distinguishing features of the angular dependence of the backward reflection coefficients for all angles of incidence of the waves on the air–water interface. Characteristic regions of the angular dependence, associated with different mechanisms of formation of the backward reflection, are elucidated.


backward reflection grazing angle radar polarization Brewster angle counterpropagating waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. L. Lomukhin, V. P. Butkhanov, and E. B. Atutov, Elektromagn. Volny Elektronn. Sist., No. 12, 33–39 (2014).Google Scholar
  2. 2.
    N. L. Fabelinskii, Molecular Scattering of Light, Plenum Press, New York (1968).CrossRefGoogle Scholar
  3. 3.
    S. B. Rautian, Usp. Fiz. Nauk, 178, No. 10, 1017–1024 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, UK (1999).CrossRefGoogle Scholar
  5. 5.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 3, Quantum Mechanics, Addison–Wesley, New York (1964).Google Scholar
  6. 6.
    Yu. L. Lomukhin, in: Proc. of the Third All-Russian Microwave Conference, Moscow (2015), pp. 309–313.Google Scholar
  7. 7.
    F. G. Bass and I. M. Fuchs, Scattering of Waves from Statistically Rough Surfaces, Plenum Press, New York (1978).Google Scholar
  8. 8.
    F. E. Nathanson, J. P. Reilly, and M. N. Cohen, Radar Design Principles, SciTech Publishing, Raleigh (1999).Google Scholar
  9. 9.
    G. Morris, Airborne Pulsed Doppler Radar, Artech House, Norwood (1988).Google Scholar
  10. 10.
    B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Optical Phase Conjugation, Springer Verlag, Berlin (1985).Google Scholar
  11. 11.
    V. N. Kornienko, A. P. Privezentsev, and V. A. Cherepenin, Izv. Ross. Akad. Nauk, Ser. Fizich., 78, No. 12, 1555–1558 (2014).Google Scholar
  12. 12.
    A. V. Popov and M. V. Bortsova, Sist. Upravl., Navig. Zv’azku, Issue 1, No. 17, 47–55 (2011).Google Scholar
  13. 13.
    G. P. Kulemin, Usp. Sovrem. Radioelektron., No. 12, 17–48 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical Material Science of the Siberian Branch of the Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations