Advertisement

Russian Physics Journal

, Volume 60, Issue 11, pp 1871–1879 | Cite as

Comparison of the Growth Processes of Germanium Quantum Dots on the Si(100) and Si(111) Surfaces

  • A. P. Kokhanenko
  • K. A. Lozovoy
  • A. V. Voitsekhovskii
Article
  • 23 Downloads

A comparative analysis is carried out of the growth peculiarities under molecular-beam epitaxy of germanium quantum dots on the silicon surfaces with different crystallographic orientations Si(100) and Si(111), including the case of the presence of tin surfactant on the surface. The free energy change, activation barrier of nucleation, critical thickness of the transition from two-dimensional growth to three-dimensional one, as well as the surface density and size distribution function of quantum dots in these systems are calculated.

Keywords

quantum dots silicon germanium tin nanoheterostructures molecular-beam epitaxy critical thickness Stranski-Krastanov transition surface density size distribution function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett., 64, No. 16, 1943–1946 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett., 65, No. 8, 1020–1023 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    S. Wirths, D. Buca, and S. Mantl, Prog. Cryst. Growth Characteriz. Mater., 62, 1–39 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Zaima, O. Nakatsuka, N. Taoka, et al., Sci. Technol. Adv. Mater., 16, 043502 (1–22) (2015).Google Scholar
  5. 5.
    D. J. Paul, Semicond. Sci. Technol., 19, R75–R108 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    J. Kouvetakis and A. V.G. Chizmeshya, J. Mater. Chem., 17, 1649–1655 (2007).CrossRefGoogle Scholar
  7. 7.
    K. L. Wang, D. Cha, J. Liu, and C. Chen, Proc. IEEE, 95, No. 9, 1866–1882 (2007).CrossRefGoogle Scholar
  8. 8.
    A. A. Shklyaev and M. Ichikawa, Usp. Fiz. Nauk, 178, Vyp. 2, 139–169 (2008).Google Scholar
  9. 9.
    J. Wu, S. Chen, A. Seeds, and H. Liu, J. Phys. D: Appl. Phys., 48, 363001 (1–28) (2015).CrossRefGoogle Scholar
  10. 10.
    V. G. Dubrovskii, Fiz. Tekh. Poluprovodn., 40, No. 10, 1153–1160 (2006).Google Scholar
  11. 11.
    A. V. Voitsekhovskii, N. A. Kul’chitskii, A. A. Mel’nikov, et al., Nano- and Mikrosistem. Tekh., No. 9, 20–31 (2014).Google Scholar
  12. 12.
    D. V. Yurasov and Yu. N. Drozdov, Semiconductors, 42, 563–570 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, et al., Fiz. Tekh. Poluprovodn., 34, No. 11, 1281–1299 (2000).Google Scholar
  14. 14.
    J.-N. Aqua, I. Berbezier, and L. Favre, Phys. Rep., 522, 59–189 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    K. Brunner, Rep. Prog. Phys., 65, No. 27, 27–72 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    X. L. Li, Y. Cao, and G. W. Yang, Phys. Chem. Chem. Phys., 12, 4768–4772 (2010).CrossRefGoogle Scholar
  17. 17.
    X. L. Li, G. Ouyang, and G. W. Yang, New J. Phys., 10, 043007 (1–14) (2008).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Osipov, F. Schmitt, S. A. Kukushkin, and P. Hess, Appl. Surf. Sci., 188, 156–162 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    B. Voightlander and A. Zinner, Appl. Phys. Lett., 63, 3055–3057 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    P. W. Deelman, L. J. Schowalter, and T. Thundat, J. Vac. Sci. Technol. A, 15, 930–935 (1997).ADSGoogle Scholar
  21. 21.
    A. A. Shklyaev, M. Shibata, and M. Ichikawa, Surf. Sci., 416, 192–199 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    S. A. Teys, Jubilee Collection of Selected Works of the Rzhanov Institute of Semiconductor Physics of the SB RAS (1964–2014) [in Russian], Parallel, Novosibirsk (2014).Google Scholar
  23. 23.
    V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures, Springer, Berlin (2014).CrossRefGoogle Scholar
  24. 24.
    R. Kern and P. Muller, J. Cryst. Growth, 146, 193–197 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    P. Muller and R. Kern, Appl. Surf. Sci., 102, 6–11 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    K. A. Lozovoy, A. V. Voitsekhovskii, A. P. Kokhanenko, and V. G. Satdarov, Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 9/2, 49–51 (2013).Google Scholar
  27. 27.
    C. Ratsch and A. Zangwill, Surf. Sci., 293, 123–131 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, Cryst. Growth Des., 11, 5441–5448 (2011).CrossRefGoogle Scholar
  29. 29.
    A. V. Osipov, S. A. Kukushkin, F. Schmitt, and P. Hess, Phys. Rev. B, 64, 205421 (1–6) (2001).ADSCrossRefGoogle Scholar
  30. 30.
    G. Ouyang, L. H. Liang, C. X. Wang, and G. W. Yang, Appl. Phys. Lett., 88, 091914 (1–3) (2006).ADSCrossRefGoogle Scholar
  31. 31.
    H. T. Johnson and L. B. Freund, J. Appl. Phys., 81, 6081–6090 (1997).ADSCrossRefGoogle Scholar
  32. 32.
    S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk, 168, Vyp. 10, 1083–1116 (1998).Google Scholar
  33. 33.
    A. E. Dolbak and B. Z. Olshanetsky, CEJP, 4, 310–317 (2006).ADSGoogle Scholar
  34. 34.
    A. V. Voitsekhovskii, A. P. Kokhanenko, and K. A. Lozovoy, Izv. Vyssh. Uchebn. Zaved. Fiz., 58, No. 8/3, 227–230 (2015).Google Scholar
  35. 35.
    K. A. Lozovoy, A. P. Kokhanenko, and A. V. Voitsekhovskii, Appl. Phys. Lett., 109, 021604 (1–4) (2016).ADSCrossRefGoogle Scholar
  36. 36.
    A. Wakahara, K. K. Vong, T. Hasegawa, et al., J. Cryst. Growth, 151, 52–59 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    X. W. Lin, Z. Liliental-Weber, J. Washburn, et al., J. Vac. Sci. Technol. B, 13, 1805–1809 (1995).CrossRefGoogle Scholar
  38. 38.
    R. J. Jaccodine, J. Electrochem. Soc., 110, 524–527 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. P. Kokhanenko
    • 1
  • K. A. Lozovoy
    • 1
  • A. V. Voitsekhovskii
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations