Skip to main content
Log in

The Effect of Ion Irradiation on Nanocrystallization and Surface Relief of a Ribbon from Fe72.5Cu1Nb2Mo1.5Si14B9 Alloy

  • Published:
Russian Physics Journal Aims and scope

Using the methods of X-ray diffraction and atomic force microscopy, the process of crystallization of an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 alloy irradiated with accelerated Ar+ ions is investigated. It is found out that an irradiation by the Ar+ ions with the energy 30 keV at the ion current density 300 μA/cm2 (fluence 3.75·1015 cm–2, irradiation time ~2 s, ion-beam short-duration heating up to 350°С, which is 150°С lower than the thermal crystallization threshold) results in a complete crystallization of this amorphous alloy (throughout the bulk of a 25 μm ribbon) followed by precipitation of solid solution crystals of α-Fe(Si), close in its composition to Fe80Si20, stable phase of Fe3Si, and metastable hexagonal phases. By the methods of atomic force and scanning tunneling microscopy it is shown that nanocrystallization caused by ion irradiation is accompanied by surface relief changes both on the irradiated and unirradiated sides of the Fe72.5Cu1Nb2Mo1.5Si14B9 alloy ribbon at the depth exceeding by a factor of 103 that of the physical ion penetration for this material. The data obtained, taking into account a significant temperature decrease and multiple acceleration of the crystallization process, serve an evidence of the radiation-dynamic influence of accelerated ions on the metastable amorphous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Golovin, Introduction into Nanotechnology [in Russian] Mashinostroyenie, Moscow (2003).

    Google Scholar 

  2. R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials [in Russian], Akademia Publ. Center, Moscow (2005).

    Google Scholar 

  3. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  4. Nanocrystalline Materials. The Synthesis-Structure-Properties Relationships and Applications (Ed. S. C. Tjong), Elsevier Ltd. (2006).

  5. A. N. Didenko, Yu. P. Sharkeev, E. V. Kozlov, and A. I. Ryabchikov, The Effects of Long-Range Action in Ion-Implanted Metallic Materials [in Russian], NTL Publ., Tomsk (2004).

    Google Scholar 

  6. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Formation, Structure and Properties [in Russian], IKTs Akademkniga (2007).

  7. R. A. Andrievskii and A. M. Glaezer, Usp. Fiz. Nauk, 179, Iss. 4, 337–358 (2009).

  8. A. M. Glaezer, Deform. Razrush. Mater., No. 2, 1–7 (2010).

  9. S. P. Bugaev, A. M. Iskoldskii, G. A. Mesyats, and D. I. Proskurovsky, Sov. Tech. Phys., 37, Iss. 12, 2206–2208 (1967).

  10. Plasma-Emitter Sources of Charged Particles (Ed. P. M. Schanin) [in Russian], Nauka, Ekaterinburg (1993).

  11. V. V. Ovchinnikov, V. I. Chernoborodov, and Yu. G. Ignatenko, Nucl. Instrum. Methods Phys. Res. B, 103, 313–317 (1995).

    Article  ADS  Google Scholar 

  12. B. K. Sokolov, V. V. Gubernatorov, Yu. N. Dragoshanskii, et al., Phys. Met. Metallogr., 89, Iss. 4, 348–357 (2000).

  13. V. V. Ovchinnikov, N. V. Gavrilov, N. V. Gushchina, et al., Russ. Metallurg. (Metally), No. 2, 62– 69 (2010).

  14. V. V. Ovchinnikov, Phys. Usp., 51, Iss. 9, 955–974 (2008).

  15. V. V. Gubernatorov, Yu. N. Dragoshanskii, V. A. Ivchenko, V. V. Ovbchinnikov, and T. S. Sycheva, A method for thermomagnetic processing of magnetically soft materials, RF Patent No. 2321644, MPK С21D 1/04 (2006.01); applicant and patent holder: Institute of Metal Physics UB RAS No. 2006128319/02; Appl. 03.08.06; Publ. 10.04.08, Bull. No. 10 (2008).

  16. V. V. Ovchinnikov, V. N.Chernoborodov, E. P. Mikhalishcheva, et al., Trans. Mat. Res. Soc. Jpn., 16B, 1489–1492 (1994).

    Google Scholar 

  17. V. V. Ovchinnikov, N. V. Gushchina, T. M. Gapontseva, et al., High Pressure Res., No. 5, 1–10 (2015).

  18. G. Herze, IEEE Trans. Magn., 25, 3327–3329 (1989).

  19. Y. Yoshizawa, Nanocrystalline soft magnetic materials and their applications, in Handbook of Advanced Magnetic Materials 4: Properties and Applications (Eds. by Y. Liu, D. J. Sellmyer, and D. Shindo) Springer, New York (2006).

  20. N. V. Gavrilov, G. A. Mesyats, S. P. Nikulin, et al., J. Vac. Sci. Technol., A14, 1050–1055 (1996).

    Article  ADS  Google Scholar 

  21. I. V. Lyasotskii, N. B. Dyakonova, E. N. Vlasova, et al., Phys. Stat. Sol. A, 203, 259–270 (2006).

    Article  ADS  Google Scholar 

  22. G. Rizza, A. Dunlop, G. Jaskierowicz, and M. Kopcewicz, Nucl. Instrum. Methods Phys. Res. В, 226, 609–621 (2004).

  23. N. V. Mushnikov, A. P. Potapov, D. A. Shishkin, et al., Phys. Met. Metallogr., 116, No. 7, 663–670 (2015).

    Article  ADS  Google Scholar 

  24. J. M. Borrego, C. F. Conde, and A. Conde, Phil. Mag. Lett., 80, 359–365 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Romanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 157–165, October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, I.Y., Gushchina, N.V., Ovchinnikov, V.V. et al. The Effect of Ion Irradiation on Nanocrystallization and Surface Relief of a Ribbon from Fe72.5Cu1Nb2Mo1.5Si14B9 Alloy. Russ Phys J 60, 1823–1831 (2018). https://doi.org/10.1007/s11182-018-1288-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1288-7

Keywords

Navigation