Second-Order Chaos Indicators MEGNO2 and OMEGNO2: Theory

Modifications of the Mean Exponential Growth factor of Nearby Orbits (MEGNO) linear variational method called MEGNO2 and OMEGNO2 indicators are introduced. The modifications are based on taking into account not only the linear, but also the nonlinear part of the increment of the phase flow in the divergence among nearby trajectories according to the second-order formulas. The new indicators allow one to determine more quickly the nature of the orbits under study in dynamical systems with zero or small Lyapunov exponents in comparison with the first-order variational indicators. They improve the analysis of regular regions and, in particular, periodic orbits as well as prevent the appearance of spurious structures in the resulting mappings.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Froeschlé, E. Lega, and R. Gonczi, Celest. Mech. Dyn. Astr., 67, 41–62 (1997).

  2. 2.

    C. Froeschlé and E. Lega, Celest. Mech. Dyn. Astr., 78, 167–195 (2000).

    ADS  Article  Google Scholar 

  3. 3.

    N. Voglis, G. Contopoulos, and C. Efthymiopoulos, Celest. Mech. Dyn. Astr., 37, 211–220 (1999).

    ADS  Article  Google Scholar 

  4. 4.

    P. M. Cincotta and C. Simo, Astron. Astrophys. Sup., 147, 205–228 (2000).

    ADS  Article  Google Scholar 

  5. 5.

    P. M. Cincotta, C. M. Giordano, and C. Simo, Physica D, 182, 151–178 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Ch. Skokos, J. Phys. A, 34, 10029–10043 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Ch. Skokos, T. C. Bountis, and Ch. Antonopoulos, Physica D, 231, 30–54 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    G. Lukes-Gerakopoulos, N. Voglis, and C. Efthymiopoulos, Physica A, 387, 1907–1925 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    N. P. Maffione et al., Celest. Mech. Dyn. Astr., 111, 285–307 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    L. A. Darriba et al., Int. J. Bifurcation and Chaos, 22, 1230033 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    A. M. Koksin and V. A. Shefer, Proc. IAU Symp., 9, No. 310, 35–38 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    E. Lega and C. Froeschlé, Celest. Mech. Dyn. Astr., 81, 129–147 (2001).

    ADS  Article  Google Scholar 

  13. 13.

    M. Fouchard et al., Celest. Mech. Dyn. Astr., 83, 205–222 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    R. Barrio, Chaos, Solutions and Fractals, 25, 711–726 (2005).

  15. 15.

    K. Okubo and K. Umeno, Preprint, arXiv:1501.00243v5 (18 March 2015).

  16. 16.

    V. A. Shefer and A. M. Koksin, Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 6/3, 256–258 (2013).

    ADS  Google Scholar 

  17. 17.

    Ch. Skokos, Lect. Notes Phys., 790, 63–135 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    P. M. Cincotta and C. M. Giordano, Lect. Notes Phys., 915, 93–128 (2016).

    Article  Google Scholar 

  19. 19.

    K. Goździewski et al., Astron. Astrophys., 378, 569–586 (2001).

    ADS  Article  Google Scholar 

  20. 20.

    S. Valk et al., Adv. Space Res., 43, 1509–1526 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    T. C. Hinse et al., Mon. Not. R. Astron. Soc., 404, 837–857 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev. A, 14, 2338–2345 (1976).

    ADS  Article  Google Scholar 

  23. 23.

    T. C. Hinse et al., Astron. Astrophys., 488, 1133–1147 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    V. A. Shefer, Izv. Vyssh. Uchebn. Zaved. Fiz., 54, No. 6/2, 13–21 (2011).

    Google Scholar 

  25. 25.

    R. Barrio, W. Borczyk, and S. Breiter, Chaos, Solutions and Fractals, 40, 1697–1714 (2009).

  26. 26.

    M. Guzzo, E. Lega, and C. Froeschlé, Physica D, 163, 1–25 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    V. A. Shefer and A. M. Koksin, Russ. Phys. J., 59, No. 1, 71–75 (2016).

    Article  Google Scholar 

  28. 28.

    R. Barrio, Lect. Notes Phys., 915, 55–92 (2016).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Shefer.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 71–79, October, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shefer, V.A. Second-Order Chaos Indicators MEGNO2 and OMEGNO2: Theory. Russ Phys J 60, 1728–1738 (2018). https://doi.org/10.1007/s11182-018-1275-z

Download citation

Keywords

  • regular and chaotic dynamics
  • variational chaos indicators
  • MEGNO method