Skip to main content
Log in

Angular Distributions of Plasma Flows in a Vacuum Arc with Boride Cathodes

  • Published:
Russian Physics Journal Aims and scope

Results of investigation of the angular distribution and mass-to-charge fractions of the ion flow generated in a pulsed vacuum arc with lanthanum hexaboride and boron carbide cathodes are presented. It is shown that the discharge with such cathodes provides efficient generation of the plasma with a high fraction of boron ions with charge states from 1+ to 3+ whose total fraction is determined by the fraction of the boron atoms in the cathode material. The angular distributions of ions in the plasma flow depend on the relationship between the masses of components of cathode materials: in the case of lanthanum hexaboride cathode, the distribution of boron ions is wider than that of lanthanum ions, and in the case of boron carbide cathode, the boron and carbon ion distributions are practically identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. T. Rie, Surf. Coat. Technol., 112, Nos. 1–3, 56–62 (1999).

    Article  Google Scholar 

  2. S. C. Jain, W. Schoenmaker, R. Lindsay, et al., J. Appl. Phys., 91, 8919–8941 (2002).

    Article  ADS  Google Scholar 

  3. G. Carter and W. A. Grant, Ion Implantation of Semiconductors, Wiley, USA (1976).

    Google Scholar 

  4. M. V. Rao, J. A. Gardner, P. H. Chi, et al., J. Appl. Phys., 81, 6635–6641 (1997).

    Article  ADS  Google Scholar 

  5. V. V. Uglov, D. P. Rusalsky, V. V. Khodasevich, et al., Surf. Coat. Technol., 103–104, 317–322 (1998).

    Article  Google Scholar 

  6. C. Mitterer, J. Solid State Chem., 133, No. 1, 279–291 (1997).

    Article  ADS  Google Scholar 

  7. J. Sasaki and I. G. Brown, J. Appl. Phys., 66, 5198–5203 (1989).

    Article  ADS  Google Scholar 

  8. J. M. Williams, C. C. Klepper, and R. C. Hazelton, Nucl. Instrum. Methods Phys. Res. B, 237, 278–283 (2005).

    Article  ADS  Google Scholar 

  9. O. R. Monteiro, M. P. Delplancke-Ogletree, and C. C. Klepper, J. Mater. Sci., 38, 3117–3120 (2003).

    Article  ADS  Google Scholar 

  10. A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu. Yushkov, Tech. Phys. Lett., 41, No. 9, 880–883 (2015).

    Article  ADS  Google Scholar 

  11. G. Yu. Yushkov, V. P. Frolova, A. G. Nikolaev, et al., in: Proc. 27th Int. Symp. on Discharges and Electrical Insulation in Vacuum., Suzhou (2016), pp. 774–777.

  12. A. G. Nikolaev, G. Y. Yushkov, K. P. Savkin, and E. M. Oks, IEEE Trans. Plasma Sci., 41, No. 8, 1923–1928 (2013).

    Article  ADS  Google Scholar 

  13. A. G. Nikolaev, G. Y. Yushkov, K. P. Savkin, and E. M. Oks, Rev. Sci. Instrum., 83, No. 2, 02A503 (2012).

    Article  Google Scholar 

  14. A. S. Bugaev, A. V. Vizir, V. I. Gushenets, et al., Laser Part. Beams, 21, No. 2, 139–156 (2003).

    ADS  Google Scholar 

  15. A. G. Nikolaev, E. M. Oks, K. P. Savkin, et al., J. Appl. Phys., 116, 213303 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nikolaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 62–65, September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, A.G., Oks, E.M., Frolova, V.P. et al. Angular Distributions of Plasma Flows in a Vacuum Arc with Boride Cathodes. Russ Phys J 60, 1528–1532 (2018). https://doi.org/10.1007/s11182-018-1246-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1246-4

Keywords

Navigation