Skip to main content
Log in

Physical Kinetics of Electrons in a High-Voltage Pulsed High-Pressure Discharge with Cylindrical Geometry

  • Published:
Russian Physics Journal Aims and scope

Results of theoretical modeling of the phenomenon of a high-voltage discharge in nitrogen at atmospheric pressure are presented, based on a consistent kinetic theory of the electrons. A mathematical model of a nonstationary high-pressure discharge has been constructed for the first time, based on a description of the electron component from first principles. The physical kinetics of the electrons are described with the help of the Boltzmann kinematic equation for the electron distribution function over momenta with only ionization and elastic collisions taken into account. A detailed spatiotemporal picture of a nonstationary discharge with runaway electrons under conditions of coaxial geometry of the gas diode is presented. The model describes in a self-consistent way both the process of formation of the runaway electron flux in the discharge and the influence of this flux on the rate of ionization processes in the gas. Total energy spectra of the electron flux incident on the anode are calculated. The obtained parameters of the current pulse of the beam of fast electrons correlate well with the known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. É. Stankevich and V. G. Kalinin, Dokl. Akad. Nauk SSSR, 77, No. 1, 72 (1967).

    Google Scholar 

  2. L. V. Tarasova, L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Zh. Tekh. Fiz., 44, No. 3, 564 (1974).

    Google Scholar 

  3. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Usp. Fiz. Nauk, 160, No. 7, 49 (1990).

    Article  Google Scholar 

  4. S. B. Alekseev, V. M. Orlovskii, and V. F. Tarasenko, Pis’ma Zh. Tekh. Fiz., 29, No. 10, 29 (2003).

    Google Scholar 

  5. I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, Instrum. Exp. Tech., 55, No. 1, 72 (2012).

    Article  Google Scholar 

  6. G. A. Mesyats, M. I. Yalandin, A. G. Reutova, et al., Fiz. Plazmy, 38, No. 1, 34 (2012).

    Google Scholar 

  7. A. V. Gurevich, G. A. Mesyats, K. P. Zybin, et al., Phys. Lett. A, 375, 2845–2849 (2011).

    Article  ADS  Google Scholar 

  8. A. V. Gurevich and K. P. Zybin, Usp. Fiz. Nauk, 171, No. 11, 1177–1199 (2001).

    Article  Google Scholar 

  9. G. A. Askar’yan, Pis’ma Zh. Eksp. Teor. Fiz., 2, No. 4, 179–182 (1965).

    Google Scholar 

  10. D. Levko, V. Tz. Gurovich, and Ya. E. Krasik, J. Appl. Phys., 111, 123303 (2012).

    Article  ADS  Google Scholar 

  11. D. Levko and Ya. E. Krasik, J. Appl. Phys., 111, 013305 (2012).

    Article  ADS  Google Scholar 

  12. V. V. Lisenkov and V. A. Shklyaev, Pis’ma Zh. Tekh. Fiz., 39, No. 16, 38−46 (2013).

    Google Scholar 

  13. L. P. Babich and M. L. Kudryavtseva, Zh. Eksp. Teor. Fiz., 131, No. 5, 808–818 (2007).

    Google Scholar 

  14. V. Y. Kozhevnikov, A. V. Kozyrev, and N. S. Semeniuk, Europhys. Lett., 112, No. 1, 15001(6) (2015).

    Article  ADS  Google Scholar 

  15. V. Y. Kozhevnikov, A. V. Kozyrev, and N. S. Semeniuk, Matter Radiat. Extrem., 1, 264–268 (2016).

    Article  Google Scholar 

  16. I. Yukikazu, J. Phys. Chem. Ref. Data, 35, No. 1, 31–53 (2006).

    Article  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, London (1977).

    MATH  Google Scholar 

  18. Yu. P. Raizer and M. N. Shneider, Fiz. Plazmy, 15, No. 3, 318 (1989).

    Google Scholar 

  19. H. Bethe, Ann. Phys., 397, No. 3, 325–400 (1930).

    Article  Google Scholar 

  20. T. Tabata and R. Ito, Nucl. Instrum. Methods, 127, 429−434 (1975).

    Article  ADS  Google Scholar 

  21. G. Strang, SIAM J. Numer. Anal., 5, No. 3, 506–517 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Cheng and G. Knorr, J. Comput. Phys., 22, No. 3, 330–351 (1976).

    Article  ADS  Google Scholar 

  23. T. Nakamura and T. Yabe, Comput. Phys. Commun., 120, No. 2–3, 122–154 (1999).

    Article  ADS  Google Scholar 

  24. A. V. Gurevich, G. A. Mesyats, K. P. Zybin, et al., Phys. Rev. Lett., 109, 085002 (2012).

    Article  ADS  Google Scholar 

  25. V. Yu. Kozhevnikov, A. V. Kozyrev, and N. S. Semeniuk, Russ. Phys. J., 59, No. 12, 1981−1988 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Kozhevnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 148–158, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikov, V.Y., Kozyrev, A.V. & Semeniuk, N.S. Physical Kinetics of Electrons in a High-Voltage Pulsed High-Pressure Discharge with Cylindrical Geometry. Russ Phys J 60, 1425–1436 (2017). https://doi.org/10.1007/s11182-017-1232-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1232-2

Keywords

Navigation