Skip to main content
Log in

An Investigation of the Electrical Strength Recovery of a Cold-Cathode Thyratron

  • Published:
Russian Physics Journal Aims and scope

An investigation of the process of electrical strength recovery is performed using demountable devices and a TPI-10k/50 two-section, cold-cathode, sealed-off thyratron. The method of forced removal of the discharge burning products is used via a non-self-sustained discharge immediately after a breakdown in the thyratron. Measurements of the non-self-sustained discharge current allow estimating the time of the electrical strength recovery in the thyratron sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748–753 (1989).

    Article  ADS  Google Scholar 

  2. M. Stetter, P. Felsner, J. Christiansen, et al., IEEE Trans. Plasma Sci., 23, 283–293 (1995).

    Article  ADS  Google Scholar 

  3. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, et al., IEEE Trans. Plasma Sci., 29, No. 5, 802–808 (2001).

    Article  ADS  Google Scholar 

  4. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., (2013). 41, No. 8, 2087–2096.

  5. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366–5371 (1993).

    Article  ADS  Google Scholar 

  6. J. Zhang, J. P. Zhao, and Q. G. Zhang, IEEE Trans. Plasma Sci., 42, No. 8, 2037–2041 (2014).

    Article  ADS  Google Scholar 

  7. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D: Appl. Phys., 32, No. 6, 699–705 (1999).

    Article  ADS  Google Scholar 

  8. Y. D. Korolev, Rus. J. General Chemistry, 85, No. 5, 1311–1325 (2015).

  9. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Plasma Sources Sci. Tech., 23, No. 5, 054016 (2014).

    Article  ADS  Google Scholar 

  10. V. Yu. Kozhevnikov, A. V. Kozyrev, N. S. Semenyuk, Russ. Phys. J., 59, No. 12, 1981–1988 (2016).

    Article  Google Scholar 

  11. Yu. S. Akishev, G. I. Aponin, M. E. Grushin, et al., Plasma Phys. Rep., 33, Iss. 7, 584–601 (2007).

  12. A. V. Bolotov, A. V. Kozyrev, and Y. D. Korolev, Plasma Phys. Rep., 19, Iss. 5, 709 (1993).

  13. J. Hu and J. L. Rovey, J. Phys. D: Appl. Phys., 45, 465203 (2012).

    Article  ADS  Google Scholar 

  14. E. Dewald, K. Frank, D. H. H. Hoffman, et al., IEEE Trans. Plasma Sci., 25, No. 2, 272–278 (1997).

    Article  ADS  Google Scholar 

  15. N. N. Koval, E. M. Oks, P. M. Schanin, et al., Nucl. Instrum. Methods Phys. Res., A321, 417–428 (1992).

    Article  ADS  Google Scholar 

  16. Y. D. Korolev, O. B., Frants, V. G. Geyman, et al., IEEE Trans. Plasma Sci., 33, No. 5, 1648–1653 (2005).

  17. J. Zhao, H. Yin, L. Zhang, et al., Phys. Plasma, 24, No. 3, 033118 (2017).

    Article  ADS  Google Scholar 

  18. N. Kumar, A. S. Jadon, P. Shukla, et al., IEEE Trans. Plasma Sci., 45, No. 3, 405–411 (2017).

    Article  ADS  Google Scholar 

  19. O. Rosier, R. Apetz, K. Bergmann, et al., IEEE Trans. Plasma Sci., 32, No. 1, 240–246 (2004).

    Article  ADS  Google Scholar 

  20. K. Bergmann, J. Vieker, and A. von Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).

    Article  ADS  Google Scholar 

  21. V. M. Borisov, A. V. Eltsov, A. S. Ivanov, et al., J. Phys. D. Appl. Phys., 37, No. 23, 3254–3265 (2004).

    Article  ADS  Google Scholar 

  22. S. V. Zakharov, Plasma Sources Sci. Technol., 17, No. 2, 024017(2008).

  23. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., J. Phys. Conf. Series, 552, 012019 (2014).

    Article  Google Scholar 

  24. I. V. Lopatin, P. M. Schanin, Y. H. Akhmadeev, et al., Plasma Phys. Rep., 38, No. 7, 583–589 (2012).

    Article  ADS  Google Scholar 

  25. G. Mechtersheimer, R. Kohler, T. Lasser, and R. Meyer, J. Phys. E, 19, 466–470 (1986).

    Article  ADS  Google Scholar 

  26. V. D. Bochkov, A. V. Kolesnikov, Y. D. Korolev, et al., IEEE Trans. Plasma Sci., 23, 341–346 (1995).

    Article  ADS  Google Scholar 

  27. N. V. Landl, Y. D. Korolev, O. B. Frants, et al., J. Phys. Conf. Series, 652, 012049(2015).

    Article  Google Scholar 

  28. Y. D. Korolev, O. B. Frants, V. G. Geyman, et al., IEEE Trans. Plasma Sci.,40, 2951–2960 (2012).

  29. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799–807 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 13–20, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Geyman, V.G. et al. An Investigation of the Electrical Strength Recovery of a Cold-Cathode Thyratron. Russ Phys J 60, 1277–1284 (2017). https://doi.org/10.1007/s11182-017-1208-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1208-2

Keywords

Navigation