Skip to main content
Log in

Prebreakdown Currents in a Sealed-off Two-Section Cold-Cathode Thyratron and Methods for Increasing the Breakdown Voltage

  • Published:
Russian Physics Journal Aims and scope

The data on the measured static breakdown voltages and pre-breakdown currents flowing in the main gap of a two-section, sealed-off thyratron with a cold-cathode TPI1-10k/50 are presented. It is shown that pre-breakdown current in the lower section appears at lower voltages than in the upper section. A few methods are proposed for increasing the thyratron breakdown voltage via re-distribution of the voltage between the sections using capacitive and resistive voltage dividers. It is demonstrated that either the self-capacitance of one of the sections or the resistance due to the pre-breakdown current flow could serve as one of the arms of the divider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748–753 (1989).

    Article  ADS  Google Scholar 

  2. T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, No. 3, 324–329 (1995).

    Article  ADS  Google Scholar 

  3. V. D. Bochkov, A. V. Kolesnikov, Y. D. Korolev, et al., IEEE Trans. Plasma Sci., 23, No. 3, 341–346 (1995).

    Article  ADS  Google Scholar 

  4. P. Bickel, J. Christiansen, K. Frank, et al., IEEE Trans. Electron Devices, 38, 712–716 (1991).

    Article  ADS  Google Scholar 

  5. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, 103508 (2015).

    Article  ADS  Google Scholar 

  6. Yu. D. Korolev, Rus. J. General Chemistry, 85, No. 5, 1311–1325 (2015).

    Article  Google Scholar 

  7. Yu. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 42, No. 6, 1615–1622 (2014).

    Article  Google Scholar 

  8. Yu. D. Korolev, O. B. Frants, N. V. Landl, et al., Plasma Sources Sci. Tech., 23, No. 5, 054016 (2014).

    Article  ADS  Google Scholar 

  9. V. Yu. Kozhevnikov, A. V. Kozyrev, and N. S. Semenyuk, Russ. Phys. J., 59, No. 12, 1981–1988 (2017).

    Article  Google Scholar 

  10. Yu. S. Akishev, G. I. Aponin, M. E. Grushin, et al., Plasma Phys. Rep., 33, Iss. 7, 584–601 (2007).

  11. A. V. Bolotov, A. V. Kozyrev, and Y. D. Korolev, Plasma Phys. Rep., 19, Iss. 5, 709 (1993).

  12. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366-5371 (1993).

    Article  ADS  Google Scholar 

  13. J. Hu and J. L. Rovey, J. Phys. D: Appl. Phys., 45, 465203 (2012).

    Article  ADS  Google Scholar 

  14. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, et al., IEEE Trans. Plasma Sci., 29, No. 5, 802–808 (2001).

    Article  ADS  Google Scholar 

  15. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., IEEE Trans. Plasma Sci., 43, No. 8, 2349–2353 (2015).

    Article  ADS  Google Scholar 

  16. M. Stetter, P. Felsner, J. Christiansen, et al., IEEE Trans. Plasma Sci., 23, No.3, 283 (1995).

    Article  ADS  Google Scholar 

  17. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2087–2096 (2013).

    Article  ADS  Google Scholar 

  18. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D: Appl. Phys., 32, No. 6, 699–705 (1999).

    Article  ADS  Google Scholar 

  19. J. H. Feng, L. Zhou, Y. C. Fu, et al., AIP Advances, 4, 077015 (2014).

    Google Scholar 

  20. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799–807 (2016).

    Article  ADS  Google Scholar 

  21. N. V. Landl, Y. D. Korolev, O. B. Frants, et al., J. Phys. Conf. Series, 652, 012050 (2015).

    Article  Google Scholar 

  22. Y. D. Korolev and K. Frank, IEEE Trans. Plasma Sci., 27, No. 5, 1525–1537 (1999).

    Article  ADS  Google Scholar 

  23. V. N. Devyatkov, N. N. Koval, P. M. Schanin, et al., Laser Part. Beams, 21, 243 (2003).

    Article  ADS  Google Scholar 

  24. T. V. Koval, V. N. Devyatkov, and N. V. Hung, J. Phys. Conf. Series, 652, 012061 (2015).

    Article  Google Scholar 

  25. K. Frank, Y. D. Korolev, and A. I. Kuzmichev, IEEE Trans. Plasma Sci., 30, No.1, 357–362 (2002).

  26. A. I. Ryabchikov, I. A. Ryabchikov, I. B. Stepanov, and U. P. Usov, Surf. Coat. Tech., 201, 6523 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 5–12, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Geyman, V.G. et al. Prebreakdown Currents in a Sealed-off Two-Section Cold-Cathode Thyratron and Methods for Increasing the Breakdown Voltage. Russ Phys J 60, 1269–1276 (2017). https://doi.org/10.1007/s11182-017-1207-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1207-3

Keywords

Navigation