Skip to main content
Log in

An Electron-Microscopy Analysis of the Gradient Structure Formed in Titanium During Deposition of a Hard Coating

  • Published:
Russian Physics Journal Aims and scope

A titanium nitride coating 0.5 μm in thickness is deposited on specimens of VT1-0 technical-grade titanium using a vacuum-arc, plasma-assisted process. The formation of a multilayer, multiphase highly defective structure is observed, whose thickness reaches up to 40 μm. Surface and transition layers are determined from the morphological characteristics. It is shown that the surface layer (300–350 nm thick), where the major phase is TiN, possesses polycrystalline structure (crystallite size is 20–50 nm). The transition layer, whose major phase is Ti2N, is divided into two sublayers. The sublayer immediately adjacent to the surface layer has columnar structure (transverse cross section of the columns is 50–80 nm). The sublayer bordering the bulk of the specimen is formed by quasi-equiaxed crystallites (150–280 nm). The main reason for formation of the multilayer, multiphase structure is thought to be the multistage character of material modification under conditions of common vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ilyin, B. A. Kolachev, and I. S. Polkin, Titanium Alloys. Composition, Structure, Properties: reference book [in Russian], VILS-MATI, Moscow (2009).

    Google Scholar 

  2. E. V. Berlin and L. A. Seidman, Ion-Plasma Processes in Thin-Film Technology [in Russian], Tekhnosfera, Moscow (2010).

    Google Scholar 

  3. A. I. Kuzmichev, Magnetron Sputtering Systems [in Russian], Avers, Kiev (2008).

  4. A. A. Andreev, L. P. Sablev, V. M. Shulaev, and S. N. Grigoriev, Vacuum-Arc Facilities and Coatings [in Russian], NNC HFTI, Kharkov (2005).

    Google Scholar 

  5. A. A. Andreev, L. P. Sablev, and S. N. Grigoriev, Vacuum-Arc Coatings [in Russian], NNC HFTI, Kharkov (2010).

    Google Scholar 

  6. Hyun S. Myung, Hyuk M.Lee, Leonid R. Shaginyan, and Jeon G. Han, Surf. Coatings Technol., 163-164, 591–596 (2003).

    Article  Google Scholar 

  7. Hyun S. Myung , Jeon G. Han , and Jin H. Boo, Surf. Coatings Technol., 177-178, 404–408 (2004).

  8. V. A. Barvinok and V. I. Bogdanovich, Principal Physics and Mathematical Modeling of the Processes of Vacuum- Ion-Plasma Deposition [in Russian], Mashinostroyeniye, Moscow (1999).

    Google Scholar 

  9. E. V. Berkin, N. N. Koval, and L. A. Seidman, Plasma-Assisted Chemical-Thermal Processing of Steel Components [in Russian], Tekhnosfera, Moscow (2012).

    Google Scholar 

  10. E. V. Berkin, S. A. Dvinin, and L. A. Seidman, Vacuum Technology and Equipment for Deposition and Etching of Thin Films [in Russian], Tekhnosfera, Moscow (2007).

    Google Scholar 

  11. Electron-Ion-Plasma Modification of Nonferrous Metals and Alloys (Eds. N. N. Koval and Yu. F. Ivanov) [in Russian], NTL Publ., Tomsk (2016).

  12. Surface Layer Structure Evolution in Steel Subjected to Electron-Ion-Plasma Treatment (Eds. N. N. Koval and Yu. F. Ivanov) [in Russian], NTL Publ., Tomsk (2016).

  13. L. G. Vintizenko, S. V. Grigoriev, N. N. Koval, et al., Russ. Phys. J., 44, No. 9, 927–936 (2001).

    Article  Google Scholar 

  14. T. Ikeda and H. Satoh, Thin Solid Films, 195, 99–110 (1991).

    Article  ADS  Google Scholar 

  15. J. A. Sue, Surf. Coatings Technol., 61, 115–120 (1993).

    Article  Google Scholar 

  16. E. A. Borisova, G. A.Bochvar, M. Ya. Brun, et al., Titanium Alloys. Metallography of Titanium Alloys [in Russian], Metallurgiya, Moscow (1980).

  17. N. N. Koval, Yu. F. Ivanov, I. V. Lopatin, et al., Ross. Khim. Zh. (J. of the D. I. Mendeleyev Russian Chemical Siciety), LVII, Nos. 3–4, 121–133 (2013).

  18. S. Luridiana and A. Miotello, Thin Solid Films, 290–291, 289–293, (1996).

    Article  Google Scholar 

  19. E. Torok, J. Perry, L. Chollet, and W.-D. Sproul, Thin Solid Films, 153, 37– 43 (1987).

    Article  ADS  Google Scholar 

  20. J. R. Roos, J. P. Selis, E. Vancoille, et al., Thin Solid Films, 193/194, 547–556 (1990).

    Article  ADS  Google Scholar 

  21. L. A. Dobrzanski and M. Adamiak, J. Mater. Proc. Technol., 133, 50–62 (2003).

    Article  Google Scholar 

  22. R. L. Boxman, V. N. Zhitomirsky, I. Grinberg, et al., Surf. Coatings Technol., 125, 257–262 (2000).

    Article  Google Scholar 

  23. G. P. Luchinskii, Chemistry of Titanium, Khimiya, Moscow (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Ivanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 118–125, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Shugurov, V.V., Krysina, O.V. et al. An Electron-Microscopy Analysis of the Gradient Structure Formed in Titanium During Deposition of a Hard Coating. Russ Phys J 60, 875–883 (2017). https://doi.org/10.1007/s11182-017-1152-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1152-1

Keywords

Navigation