Skip to main content
Log in

Determination of the Electron Density and Electron Temperature in A Magnetron Discharge Plasma Using Optical Spectroscopy and the Collisional-Radiative Model of Argon

  • Published:
Russian Physics Journal Aims and scope

A method for determining the electron temperature and electron density in a plasma is proposed that is based on minimization of the difference between the experimental relative intensities of the spectral argon (Ar) lines and those same intensities calculated with the aid of the collisional-radiative model. The model describes the kinetics of the ground state and 40 excited states of the Ar atom and takes into account the following processes: excitation and deactivation of the states of the atom by electron impact, radiative decay of the excited states, self-absorption of radiation, ionization of excited states by electron impact, and quenching of metastable states as a consequence of collisions with the chamber walls. Using the given method, we have investigated the plasma of a magnetron discharge on a laboratory setup for intermediate-frequency magnetron sputtering for a few selected operating regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Boffard, C. C. Lin, and C. A. DeJoseph, J. Phys. D, 37, R143– R161 (2004).

    Article  ADS  Google Scholar 

  2. V. M. Donelly, J. Phys. D, 37, R217–R236 (2004).

    Article  ADS  Google Scholar 

  3. S. Iordanova and I. Koleva, Spectrochim. Acta B, 62, 344–356 (2007).

    Article  ADS  Google Scholar 

  4. X.-M. Zhu and Y.-K. Pu, J. Phys. D, 43, 403001 (2010).

    Article  Google Scholar 

  5. J. B. Boffard, R. O. Jung, C. C. Lin , and A. E. Wendt, Plasma Sources Sci. Technol., 19, 065001 (2010).

    Article  ADS  Google Scholar 

  6. X.-M. Zhu, Y.-K. Pu, Y. Celik, et al., Plasma Sources Sci. Technol., 21, 024003 (2012).

    Article  ADS  Google Scholar 

  7. R. H. Haddstone and S. L. Leonard, eds., Plasma Diagnostic Techniques, Academic Press, New York (1965).

  8. X.-M. Zhu, W.-C. J. Chen, Li, and Y.-K. Pu, J. Phys. D, 42, 025203 (2009).

  9. R. K. Gangwar, L. Sharma, R. Srivastava, and A. D. Stauffer, J. Appl. Phys., 111, 053307 (2012).

    Article  ADS  Google Scholar 

  10. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra, Pergamon, Oxford (1972).

  11. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley-Interscience, Hoboken (2005).

    Book  Google Scholar 

  12. O. Zatsarinny, Y. Wang, and K. Bartschat, Phys. Rev. A, 89, 022706 (2014).

    Article  ADS  Google Scholar 

  13. L. C. Pitchford, L. L. Alves, K. Bartschat, et al., J. Phys. D, 46, 334001 (2013).

    Article  Google Scholar 

  14. K. Bartschat and V. Zeman, Phys. Rev. A, 59, R2552 (1999).

    Article  ADS  Google Scholar 

  15. J. B. Boffard, R. O. Jung, C. C. Lin, and A. E. Wendt, Plasma Sources Sci. Technol., 18, 035017 (2009).

    Article  ADS  Google Scholar 

  16. NIST Atomic Spectra Database [http://www.nist.gov/pml/data/asd.cfm].

  17. M. A. Ali and P. M. Stone, Int. J. Mass Spectr., 271, 51–57 (2008).

    Article  Google Scholar 

  18. H. Deutsch, K. Becker, A. N. Grum-Grzhimailo, et al., Int. J. Mass Spectr., 233, 39–43 (2004).

    Article  Google Scholar 

  19. B. M. Smirnov, Excited Atoms [in Russian], Energoatomizdat, Moscow (1982).

    Google Scholar 

  20. M. E. Konishchev, O. S. Kuz’min, N. S. Morozova, and V. F. Pichugin, Izv. Vyssh. Uchebn. Zaved., 55, No. 11/2, 235–240 (2012).

    Google Scholar 

  21. E. W. Peterson and L. Talbot, AIAA J., 8, 2215 (1970).

    Article  ADS  Google Scholar 

  22. A. Brockhaus, C. Borchardt, and J. Engemann, Plasma Sources Sci. Technol., 3, 539–544 (1994).

    Article  ADS  Google Scholar 

  23. F. Chen, Plasma Sources Sci. Technol., 18, 035012 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Evdokimov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 21–29, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimov, K.E., Konishchev, M.E., Pichugin, V.F. et al. Determination of the Electron Density and Electron Temperature in A Magnetron Discharge Plasma Using Optical Spectroscopy and the Collisional-Radiative Model of Argon. Russ Phys J 60, 765–775 (2017). https://doi.org/10.1007/s11182-017-1137-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1137-0

Keywords

Navigation