Skip to main content
Log in

Formation of Nitrogen Oxides in an Apokamp-Type Plasma Source

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

Using optical and chemical processes, the composition of the products of decay of the atmospheric-pressure non-equilibrium plasma is determined in a pulsed, high-voltage discharge in the modes of apokampic and corona discharges. It is shown that the products of decay primarily contain nitrogen oxides NO x, and in the mode of the corona discharge – ozone. Potential applications of this source of plasma are discussed with respect to plasma processing of the seeds of agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Low Temperature Plasma Technology: Methods and Applications (Eds. P. K. Chu and X. P. Lu) – CRC Press, Taylor & Francis Group (2014).

  2. X. Lu, G. V. Naidis, M. Laroussi, et al., Phys. Rep, 630, No. 4, 1–84 (2016). DOI: 10.1088/0963-0252/12/1/307.

  3. Plasma for Bio-Decontamination, Medicine and Food Security (Eds. Z. Machala, K. Hensel, and Yu. Akishev) in: NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, Dordrecht–Netherlands (2012).

  4. Yu. A. Gordeev, methodological and agrobiological principles of pre-seeding bioctivation of seeds of agricultural crops with low-temperature plasma flows [in Russian], author’s abstract of a doctor of biological sciences, Smolenks (2012).

  5. B. Sera, P. Spatenka, M. Sery, et al., IEEE Trans Plasma, 38, No. 10, 2963–2968 (2010). DOI: 10.1109/TPS.2010.2060728.

    Article  ADS  Google Scholar 

  6. J. F. Jiang, Y. F. Lu, J. G. Li, et al., PLOS ONE, 9, No. 5, e97753 (2014). DOI: 10.1371/journal.pone.0097753.

    Article  ADS  Google Scholar 

  7. D. P. Park, K. Davis, S. Gilani, et al., Current Appl. Phys., No. 13, 19–29 (2013). DOI: 10.1016/j.cap.2012.12.019.

  8. M. J. Pavlovich, T. Ono, C. Galleher, et al., J. Phys. D: Appl. Phys., 47, No. 50, 505202 (2014). DOI: 10.1088/0022-3727/47/50/505202.

    Article  Google Scholar 

  9. V. S. Skakun, V. A. Panarin, D. S. Pechenitsyn , et al., Russ. Phys. J., 59, No. 5, 707–711 (2016).

  10. É. A. Sosnin, V. S. Skakun, V. A. Panarin, et al., JETF Lett., 103, No. 12, 761–764 (2016). DOI: 10.1134/S0021364016120146.

  11. V. A. Panarin, V. S. Skakun, É. A. Sosnin, and V. F. Tarasenko, Opt. Spectrosc., 122, No. 2, 15–22 (2017).

    Article  Google Scholar 

  12. T. C. Hall Jr. and F. E. Blacet, J. Chem. Phys., 20, No. 11, 1745–1949 (1952). DOI: 10.1063/1.1700281.

    Article  ADS  Google Scholar 

  13. D. Ellerweg, A. von Keudell, and J. Benedikt, Plasma Sources Sci. Technol., 21, No. 3, 034019 (2012). DOI: 10.1088/0963-0252/21/3/034019.

    Article  ADS  Google Scholar 

  14. Handbuch der Präparativen Anorganischen Chemie, (Ed. G. Brauer), Bd. 2, Ferdinand Enke-Verlag, Stuttgart (1981).

  15. T. Oppenländer, Photochemical Purification of Water and Air, Wiley–VCH Verlag, Weincheim (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. A. Sosnin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 126–130, April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnin, É.A., Goltsova, P.A., Panarin, V.A. et al. Formation of Nitrogen Oxides in an Apokamp-Type Plasma Source. Russ Phys J 60, 701–705 (2017). https://doi.org/10.1007/s11182-017-1126-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1126-3

Keywords

Navigation