Skip to main content
Log in

New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

  • ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY
  • Published:
Russian Physics Journal Aims and scope

A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as m ρ/m p – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the \( q\overline{q} \) invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton\( {e}^{\kappa^2}{z}^2 \) in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter \( {\Lambda}_{\overline{MS}} \) in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes also determines a scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. de Teramond, H. G. Dosch, and S. J. Brodsky, Phys. Rev. D, 91, 045040 (2015).

    Article  ADS  Google Scholar 

  2. H. G. Dosch, G. F. de Teramond, and S. J. Brodsky, Phys. Rev. D, 91, 085016 (2015).

    Article  ADS  Google Scholar 

  3. V. de Alfaro, S. Fubini, and G. Furlan, Nuovo Cim. A, 34, 569 (1976).

    Article  ADS  Google Scholar 

  4. S. J. Brodsky, G. F. De Teramond, and H. G. Dosch, Phys. Lett. B, 729, 3 (2014).

    Article  ADS  Google Scholar 

  5. R. Haag, J. T. Lopuszanski, and M. Sohnius, Nucl. Phys. B, 88, 257 (1975).

    Article  ADS  Google Scholar 

  6. S. Fubini and E. Rabinovici, Nucl. Phys. B, 245, 17 (1984).

    Article  ADS  Google Scholar 

  7. P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

    Article  ADS  Google Scholar 

  8. H. G. Dosch, G. F. de Teramond, and S. J. Brodsky, Phys. Rev. D, 92, 074010 (2015).

    Article  ADS  Google Scholar 

  9. G. ’t Hooft, hep-th/0408148 (2004).

  10. T. Liu and B. Q. Ma, Phys. Rev. D, 92, 096003 (2015).

    Article  ADS  Google Scholar 

  11. H. G. Dosch, G. F. de Teramond, and S. J. Brodsky, Phys. Rev. D, 95, 034016 (2017); arXiv:1612.02370 [hepph].

    Article  ADS  Google Scholar 

  12. S. J. Brodsky, H. C. Pauli, and S. S. Pinsky, Phys. Rept., 301, 299 (1998).

    Article  ADS  Google Scholar 

  13. J. Terrell, Phys. Rev., 116, 1041 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Penrose, Proc. Cambridge Phil. Soc., 55, 137 (1959).

    Article  ADS  Google Scholar 

  15. S. J. Brodsky, M. Diehl, and D. S. Hwang, Nucl. Phys. B, 596, 99 (2001).

    Article  ADS  Google Scholar 

  16. S. J. Brodsky, D. S. Hwang, B. Q. Ma, and I. Schmidt, Nucl. Phys. B, 593, 311 (2001).

    Article  ADS  Google Scholar 

  17. I. Y. Kobzarev and L. B. Okun, Sov. Phys. JETP, 16, 1343 (1963).

    ADS  Google Scholar 

  18. O. V. Teryaev, hep-ph/9904376 (1999).

  19. S. J. Brodsky, F. G. Cao, and G. F. de Teramond, Phys. Rev. D, 84, 075012 (2011).

    Article  ADS  Google Scholar 

  20. J. R. Forshaw and R. Sandapen, Phys. Rev. Lett. 109, 081601 (2012).

    Article  ADS  Google Scholar 

  21. G. F. de Teramond, H. G. Dosch, and S. J. Brodsky, Phys. Rev. D, 87, 075005 (2013).

    Article  ADS  Google Scholar 

  22. S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Phys. Rept. 584, 1 (2015).

    Article  ADS  Google Scholar 

  23. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega, Phys. Rev. D, 91, 114001 (2015).

    Article  ADS  Google Scholar 

  24. T. Gutsche, V. E. Lyubovitskij, and I. Schmidt, Phys. Rev. D, 94, 116006 (2016).

    Article  ADS  Google Scholar 

  25. G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett., 102, 081601 (2009).

    Article  ADS  Google Scholar 

  26. A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, Phys. Rev. Lett., 104, 112002 (2010).

    Article  ADS  Google Scholar 

  27. D. Ashery, Nucl. Phys. Proc. Suppl., 90, 67 (2000); Nucl. Phys. Proc. Suppl., 108, 321 (2002).

  28. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15, 438 (1972).

    Google Scholar 

  29. G. Altarelli and G. Parisi, Nucl. Phys. B, 126, 298 (1977).

    Article  ADS  Google Scholar 

  30. Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  31. G. P. Lepage and S. J. Brodsky, Phys. Lett. B, 87, 359 (1979).

    Article  ADS  Google Scholar 

  32. G. P. Lepage and S. J. Brodsky, Phys. Rev. D, 22, 2157 (1980).

    Article  ADS  Google Scholar 

  33. A. V. Efremov and A. V. Radyushkin, Phys. Lett. B, 94, 245 (1980).

    Article  ADS  Google Scholar 

  34. A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 42, 97 (1980).

    Article  Google Scholar 

  35. S. J. Brodsky and S. Gardner, Phys. Rev. Lett., 116, 019101 (2016).

    Article  ADS  Google Scholar 

  36. H. C. Pauli and S. J. Brodsky, Phys. Rev. D, 32, 1993 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  37. K. Hornbostel, S. J. Brodsky, and H. C. Pauli, Phys. Rev. D, 41, 3814 (1990).

    Article  ADS  Google Scholar 

  38. J. P. Vary, X. Zhao, A. Ilderton, et al., Nucl. Phys. Proc., Suppl. 251-252, 10 (2014).

  39. S. J. Brodsky, A. L. Deshpande, H. Gao, et al., arXiv:1502.05728 [hep-ph] (2015).

  40. S. J. Brodsky and R. F. Lebed, Phys. Rev. Lett., 102, 213401 (2009).

    Article  ADS  Google Scholar 

  41. A. Banburski and P. Schuster, Phys. Rev. D, 86, 093007 (2012).

    Article  ADS  Google Scholar 

  42. C. Cruz-Santiago, P. Kotko, and A. M. Stasto, Prog. Part. Nucl. Phys., 85, 82 (2015).

    Article  ADS  Google Scholar 

  43. K. Chiu and S. J. Brodsky, SLAC-PUB-16904; arXiv:1702.01127v2[her-th] (2017).

  44. S. J. Brodsky, R. Roskies, and R. Suaya, Phys. Rev. D, 8, 4574 (1973).

    Article  ADS  Google Scholar 

  45. S. J. Brodsky and G. F. de Teramond, arXiv:0901.0770 [hep-ph] (2009).

  46. A. Zee, Mod. Phys. Lett. A, 23, 1336 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Casher and L. Susskind, Phys. Rev. D, 9, 436 (1974).

    Article  ADS  Google Scholar 

  48. S. J. Brodsky and R. Shrock, Proc. Nat. Acad. Sci., 108, 45 (2011).

    Article  ADS  Google Scholar 

  49. S. J. Brodsky, C. D. Roberts, R. Shrock and P. C. Tandy, Phys. Rev. C, 82, 022201 (2010).

    Article  ADS  Google Scholar 

  50. P. P. Srivastava and S. J. Brodsky, Phys. Rev. D, 66, 045019 (2002).

  51. E. P. Verlinde, arXiv:1611.02269 [hep-th] (2016).

  52. G. Grunberg, Phys. Lett. B, 95, 70 (1980); Erratum: Phys. Lett. B, 110, 501 (1982).

  53. S. J. Brodsky and H. J. Lu, Phys. Rev. D, 51, 3652 (1995).

    Article  ADS  Google Scholar 

  54. S. J. Brodsky, G. F. de Teramond, and A. Deur, Phys. Rev. D, 81, 096010 (2010).

  55. A. Deur, V. Burkert, J. P. Chen, and W. Korsch, Phys. Lett. B, 650, 244 (2007).

    Article  ADS  Google Scholar 

  56. A. Deur, S. J. Brodsky, and G. F. de Teramond, Phys. Lett. B, 750, 528 (2015).

    Article  ADS  Google Scholar 

  57. S. J. Brodsky, G. F. de Teramond, A. Deur, and H. G. Dosch, Few Body Syst., 56, 621 (2015).

    Article  ADS  Google Scholar 

  58. K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).

  59. A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, Princenton (2010).

  60. M. Mojaza, S. J. Brodsky, and X. G. Wu, Phys. Rev. Lett., 110, 192001 (2013).

    Article  ADS  Google Scholar 

  61. S. J. Brodsky and S. D. Drell, Phys. Rev. D, 22, 2236 (1980).

    Article  ADS  Google Scholar 

  62. S. Liuti, A. Rajan, A. Courtoy, et al., Int. J. Mod. Phys., Conf. Ser., 25, 1460009 (2014).

  63. C. Mondal and D. Chakrabarti. // Eur. Phys. J. C 75, 261 (2015).

  64. C. Lorce, B. Pasquini, and M. Vanderhaeghen, JHEP, 1105, 041 (2011).

    Article  ADS  Google Scholar 

  65. S. J. Brodsky, AIP Conf. Proc., 1105, 315 (2009).

    Article  ADS  Google Scholar 

  66. S. J. Brodsky, Nucl. Phys. A, 827, 327C (2009).

    Article  ADS  Google Scholar 

  67. S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B, 530, 99 (2002).

    Article  ADS  Google Scholar 

  68. S. J. Brodsky, P. Hoyer, N. Marchal, et al., Phys. Rev. D, 65, 114025 (2002).

    Article  ADS  Google Scholar 

  69. S. J. Brodsky, B. Pasquini, B. W. Xiao, and F. Yuan, Phys. Lett. B, 687, 327 (2010).

    Article  ADS  Google Scholar 

  70. S. J. Brodsky, D. S. Hwang, Y. V. Kovchegov, et al., Phys. Rev. D, 88, No. 1, 014032 (2013).

    Article  ADS  Google Scholar 

  71. S. J. Brodsky and H. J. Lu, Phys. Rev. Lett., 64, 1342 (1990).

    Article  ADS  Google Scholar 

  72. S. J. Brodsky, I. Schmidt, and J. J. Yang, Phys. Rev. D, 70, 116003 (2004).

    Article  ADS  Google Scholar 

  73. I. Schienbein, J. Y. Yu, C. Keppel, et al., Phys. Rev. D, 77, 054013 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Brodsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 19–36, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodsky, S.J. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra. Russ Phys J 60, 399–416 (2017). https://doi.org/10.1007/s11182-017-1089-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1089-4

Keywords

Navigation