Skip to main content
Log in

Numerical Modeling of the Atmospheric-Pressure Helium Plasma Formed During Spark-to-Glow Discharge Transition

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

Results of numerical experiment on modeling of the atmospheric-pressure plasma formed during the spark-to-glow discharge transition in helium in low-current non-stationary plasmatron are presented. The numerical experiment is performed using the developed 2D physical and mathematical plasma model in the drift-diffusion approximation. Results of numerical calculation of the dynamics of discharge evolution are confirmed by the experimental data on the atmospheric-pressure plasma dynamics formed in the plasmatron during the spark-to-glow discharge transition. It is demonstrated that with preset initial conditions characteristic for spark breakdown, further discharge evolution leads to the formation of the near-cathode zone of the potential drop and the pulsed behavior of the electric current of the discharge. After the current pulse, the discharge transforms into the quasi-stationary mode with parameters characteristic for the glow discharge with monotonically increasing electric current and transverse dimensions of the plasma column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Demkin, S. V. Melnichuk, O. V. Demkin, et al., Phys. Plasmas, 23, 043509 (5) (2016).

  2. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 37, No. 4, 586–592 (2009).

    Article  ADS  Google Scholar 

  3. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 40, No. 11, 2837–2842 (2012).

    Article  ADS  Google Scholar 

  4. I. M. Piskarev, I. P. Ivanova, and S. Trofimova, Mezhdunar. Zh. Prikl. Fundament. Issled., No. 10, 12-16 (2014).

  5. D. Dobrynin, G. Fridman, G. Friedman, and A. Fridman, New J. Phys., 11, 115020 (26) (2009).

  6. D. Breden, K. Miki, and L. L. Raja, Plasma Sources Sci. Technol., 21, 034011 (13) (2012).

  7. T. Farouk, B. Farouk, D. Staack, et al., Plasma Sources Sci. Technol., 15, 676–688 (2006).

    Article  ADS  Google Scholar 

  8. G. E. Georghiou, A. P. Papadakis, R. Morrow, and A. C. Metaxas, J. Phys. D: Appl. Phys., 38, R303–R328 (2005).

    Article  ADS  Google Scholar 

  9. N. Balcon, C. J. M. Hagelaar, and J. P. Boeuf, IEEE Trans. Plasma Sci., 36, No. 5, 2782–2787 (2008).

    Article  ADS  Google Scholar 

  10. A. Yang, X. Wang, M. Rong, et al., Phys. Plasmas, 18, 113503 (10) (2011).

  11. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol., 14, 722–733 (2005).

    Article  ADS  Google Scholar 

  12. V. P. Demkin and S. V. Melnichuk, Phys. Plasmas, 21, 093504 (6) (2014).

  13. J. Stevefelt, J. M. Pouvesle, and A. Bouchoule, J. Chem. Phys., 76, No. 8, 4006–4015 (1982).

    Article  ADS  Google Scholar 

  14. J. A. Hornbeck, Phys. Rev., 84, 615–620 (1951).

    Article  ADS  Google Scholar 

  15. D. Lee, J. M. Park, and S. H. Hong, IEEE Trans. Plasma Sci., 33, No. 2, 949–957 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Demkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 123–128, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demkin, V.P., Melnichuk, S.V. Numerical Modeling of the Atmospheric-Pressure Helium Plasma Formed During Spark-to-Glow Discharge Transition. Russ Phys J 60, 339–345 (2017). https://doi.org/10.1007/s11182-017-1080-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1080-0

Keywords

Navigation