Skip to main content
Log in

Choice of the Effective Light Pressure Model for Glonass Satellites

  • Published:
Russian Physics Journal Aims and scope

The application of four light pressure models, including the standard model, two empirical models with different degrees of complexity, and physical-empirical model taking into account the optical properties of the spacecraft (SC) surface for prediction of SC motion and determination of its orbits is analyzed. The accuracy of these models used to determine the orbits of the GLONASS satellite system and the stability of the model parameters are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Rodriguez-Solano, U. Hugentobler, and P. Steigenberger, Adv. Space Res., 49, 1113–1128 (2012).

    Article  ADS  Google Scholar 

  2. I. S. Gayazov, Application of high-precision observation of geodetic and navigation artificial satellites for solving problems of geodynamics, Doctoral Thesis in Physical and Mathematical Sciences, Russian State Library, Saint Petersburg (2006).

    Google Scholar 

  3. IERS Standarts, IERS Technical Note, Central Bureau of IERS, Paris (1992).

    Google Scholar 

  4. D. Vokrouhlicky, P. Farinella, and F. Mignard, Astron. Astrophys., 307, No. 2, 635–644 (1996).

    ADS  Google Scholar 

  5. Ya. É. Helali, Yu. V. Batrakov, and A. M. Fominov, Trudy Inst. Prikl. Astron. RAN, No. 4, 300–309 (1999).

  6. The International GNSS Service (2013), Mode of access: http://ig scb.jpl.nasa.gov/(10.26.2014).

  7. G. Petit and B. Luzum, eds., IERS Conventions (2010), IERS Technical Note 36, Frankfurt am Main (2010).

  8. Lunar Prospector Spherical Harmonics and Gravity Models 2006. URL: http://pdsgeosciences. wustl.edu/missions/lunarp/shad (December 7, 2010).

  9. V. A. Brumberg and T. V. Ivanova, Celest. Mech. Dyn. Astron., 97, 189–210 (2007).

    Article  ADS  Google Scholar 

  10. D. Vokrouhlicky, P. Farinella, and F. Mignard, Astron. Astrophys., 290, 32 (1993).

    Google Scholar 

  11. A. Milani, A. M. Nobili, and P. Farinella, Non-Gravitational Perturbations and Satellite Geodesy, Bristol (1987).

  12. H. Fliegel, T. Gallini, and E. Swift, J. Geophys. Res. 97 (B1), 559–568 (1992).

    Article  ADS  Google Scholar 

  13. A. G. Aleksandrova and I. N. Chuvashov, in: Proc. IXth All-Russian Conf. on Fundamental and Applied Problems of Modern Mechanics, Tomsk (2016), pp. 331–333.

  14. A. G. Aleksandrova, I. N. Chuvashov, and T. V. Bordovitsyna, in: Proc. IXth All-Russian Conf. on Fundamental and Applied Problems of Modern Mechanics, Tomsk (2016), pp. 328–330.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aleksandrova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 117–122, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, A.G., Chuvashov, I.N. Choice of the Effective Light Pressure Model for Glonass Satellites. Russ Phys J 60, 331–338 (2017). https://doi.org/10.1007/s11182-017-1079-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1079-6

Keywords

Navigation