Skip to main content
Log in

Analysis of Reliability of Spectral Water Vapor Line Parameters at High Temperatures in Spectroscopic Databases

  • Published:
Russian Physics Journal Aims and scope

Parameters of high-temperature water vapor spectral lines presented in the well-known spectroscopic databases are discussed. As a reliability criterion for parameter values, recent experimental data on the transmittance measured with spectral resolution of 1 cm–1 at Т ~ 1000 K are employed. As a result of our analysis, 156 spectral lines were revealed (12 of them were found previously) in the HITEMP2010 database the use of which in calculations of the transmittance leads to considerable deviations (≥20%) from the available experimental data. The line intensities determined by this method exceed by 3 times and more the data presented in other spectroscopic bases. Additionally, the line intensities from the HITEMP2010 database in the spectral range 10–6000 cm–1 are completely compared with the result of semiempirical calculation at the high temperature available from the literature. The hot bands for which the relative deviation of the integral intensities exceeds 10% at T = 1302 K are identified. It is established that as a whole, the most reliable integral hot band intensities are contained in the HITEMP2010 database. This is confirmed by their least deviations from the measured transmittance at high temperatures. As a result, it is demonstrated that to obtain the best coincidence (Δav = 2.64%) with the measured data in the range 1000–2000 cm–1 in calculation based on the HITEMP2010 database, the parameter values recommended in the present work for lines with overestimated intensities and different distribution of the temperature coefficients must be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Rothman, I. E. Gordon, Y. Babikov, et al., J. Quant. Spectrosc. Radiat. Transfer, 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  2. M. F. Modest, Radiative Heat Transfer, Academic Press, New York (2013).

    Google Scholar 

  3. D. F. Davidson and R. K. Hanson, in: Handbook of Shock Waves, Academic Press, New York (2001), pp. 741–785.

    Book  Google Scholar 

  4. V. A. Kamenshchikov, Yu. A. Plastinin, V. M. Nikolaev, et al., Radiation Properties of Gases at High Temperatures [in Russian], Machinostroenie, Moscow (1971).

    Google Scholar 

  5. C. B. Ludwig, W. Malkmus, J. E. Reardon, et al., Handbook of Infrared Radiation from Combustion Gases, Technical Report SP-3080, NASA, Washington (1973).

    Google Scholar 

  6. R. I. Soloukhin, V. G. Sevast’yanenko, I. F. Golovnev, et al., Handbook of Radiative Heat Transfer in High-Temperature Gases, Hemisphere Publishing Corporation, New York (1987).

    Google Scholar 

  7. L. S. Rothman, I. E. Gordon, R. J. Barber, et al., J. Quant. Spectrosc. Radiat. Transfer, 111, 2139–2150 (2010).

    Article  ADS  Google Scholar 

  8. R. J. Barber, J. Tennyson, G. J. Harris, et al., Mon. Not. R. Astron. Soc., 368, 1087–1094 (2006).

    Article  ADS  Google Scholar 

  9. M. Alberti, R. Weber, M. Mancini, et al., J. Quant. Spectrosc. Radiat. Transfer, 157, 14–23 (2015).

    Article  ADS  Google Scholar 

  10. L. H. Coudert, M.-A. Martin-Drumel, and O. Pirali, J. Mol. Spectrosc., 303, 36–41 (2014).

    Article  ADS  Google Scholar 

  11. S. N. Mikhailenko, D. Mondelain, S. Kassi, et al., J. Quant. Spectrosc. Radiat. Transfer, 140, 48–57 (2014).

    Article  ADS  Google Scholar 

  12. J.-M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc., 51, 142–150 (1974).

    Article  ADS  Google Scholar 

  13. R. A. Toth, Line list of water vapor parameters from 500 to 8000 cm–1 (2015) [Electronic resource], URL: http://mark4sun.jpl.nasa.gov/h2o.html.

  14. C. Camy-Peyret and J.-M. Flaud, Mol. Phys., 32, 523–537 (1976).

    Article  ADS  Google Scholar 

  15. Y. Y. Kwan, J. Mol. Spectrosc., 71, 260–280 (1978).

    Article  ADS  Google Scholar 

  16. O. N. Ulenikov and G. A. Ushakova, J. Mol. Spectrosc., 117, 195–205 (1986).

    Article  ADS  Google Scholar 

  17. R. R. Gamache and J.-M. Hartmann, Can. J. Chem., 82, 1013–1027 (2004).

    Article  Google Scholar 

  18. S. T. Melin and S. T. Sanders, J. Quant. Spectrosc. Radiat. Transfer, 180, 184–191 (2016).

    Article  ADS  Google Scholar 

  19. O. K. Voitsekhovskaya, A. V. Voitsekhovskii, O. V. Egorov, et al., Proc. SPIE, 9292, 929211 (2014).

    Article  Google Scholar 

  20. S. P. Bharadwaj, M. F. Modest, and R. J. Riazzi, J. Heat. Transfer, 128, 374–381 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Voitsekhovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 57–67, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskaya, O.K., Egorov, O.V. & Kashirskii, D.E. Analysis of Reliability of Spectral Water Vapor Line Parameters at High Temperatures in Spectroscopic Databases. Russ Phys J 60, 261–272 (2017). https://doi.org/10.1007/s11182-017-1070-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1070-2

Keywords

Navigation