Russian Physics Journal

, Volume 60, Issue 1, pp 157–162 | Cite as

Investigation of the Special Features of Low-Temperature Carbon Coating Deposition on the Permalloy Film Surface Under Normal Conditions During Interaction with Aromatic Solvents

  • A. A. Chlenova
  • A. V. Svalov
  • S. N. Shevyrtalov
  • K. A. Chichai
  • V. V. Rodionova
  • G. V. Kurlyandskaya
Article
  • 33 Downloads

Permalloy Fe19Ni81 films are prepared by the method of ion plasma deposition on a single crystal silicon substrate in the presence of a technological magnetic field (100 Oe). The surface of the samples so obtained is modified under various conditions either with preliminary exposure in the presence of atmospheric oxygen or without it. Processes of low-temperature carbon condensation and defective graphene-like coating formation are observed for the sputtered and toluene exposed films, correspondingly. The method of energy dispersive analysis demonstrates that after fortnight modification in toluene the carbon content on the surface exceeds 30%, which is much higher than the natural ambient carbon background. An increase in the surface modification time in the aromatic toluene solvent to 11 weeks leads to a linear growth of the carbon content on the surface up to 97%. Time of preliminary holding in air before immersion into the aromatic solvent does not influence significantly the kinetics of the carbon coating formation. As a whole, this coating does not influence significantly on the static magnetic properties of the film samples.

Keywords

thin magnetic films magnetic properties 3d-metals aromatic solvents low-temperature carbon condensation functional coatings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Hamilton and J. M. Blakely, Surf. Sci., 91, 199–217 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    J. Wintterlin and M.-L. Bocquet, Surf. Sci., 603, 1841–1852 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    I. V. Beketov, A. P. Safronov, A. V. Bagazeev, et al., J. All. Comp., 586, 483–488 (2014).CrossRefGoogle Scholar
  4. 4.
    A. P. Safronov, G. V. Kurlyandskaya, A. A. Chlenova, et al., Langmuir, 30, 3243–3253 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Coïsson, F. Vinal, P. Tiberto, and F. Celegato, J. Magn. Magn. Mat., 321, 806–809 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    T. R. McGuire and R. I. Potter, IEEE Trans. Magn., MAG-11, No. 4, 1018–1038 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, et al., IEEE Trans. Magn., 46, No. 2, 333–336 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    G. V. Kurlyandskaya, A. A. Chlenova, E. Fernandez, and K. J. Lodewijk, J. Magn. Magn. Mat., 383, 220–225 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    P. Kovacic and F. W. Koch, J. Org. Chem., 28, 1864−1867 (1963).CrossRefGoogle Scholar
  10. 10.
    S. O. Volchkov, A. V. Svalov, and G. V. Kurlyandskaya, Russ. Phys. J., 52, No. 8, 769–776 (2009).CrossRefGoogle Scholar
  11. 11.
    A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, et al., IEEE Trans. Magn., 46, 333–335 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Chlenova, G. V. Kurlyandskaya, A. P. Safronov, et al., Solid State Phenomena, 233234, 657–661 (2015).Google Scholar
  13. 13.
    A. V. Svalov, B. González Asensio, A. A. Chlenova, et al., Vacuum, 119, 245–249 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. A. Chlenova
    • 1
  • A. V. Svalov
    • 1
  • S. N. Shevyrtalov
    • 2
  • K. A. Chichai
    • 2
  • V. V. Rodionova
    • 2
    • 3
  • G. V. Kurlyandskaya
    • 1
  1. 1.Ural Federal University Named after the First President of Russia B. N. YeltsinEkaterinburgRussia
  2. 2.Fabrika High-Tech Park at Immanuel Kant Baltic Federal UniversityKaliningradRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations