Skip to main content
Log in

Orientable Objects in Relativistic Quantum Theory

  • Published:
Russian Physics Journal Aims and scope

An approach to the quantum description of the orientation of relativistic particles, generalizing the approach to nonrelativistic objects possessing orientation (in particular, a rotator) is proposed, based on the self-consistent use of two reference frames. The realization of such an approach is connected with the introduction of wave functions f (x, z) on the Poincaré group M(3,1), which depend on the coordinates x μ of the Minkowski space M(3,1)/Spin(3,1) and orientational variables assigned by the elements z αβ of the matrix Z ∈Spin(3,1).The field f (x, z) is the generating function for ordinary spin-tensor fields and admits a number of symmetries. Besides the Lorentz transformations (corresponding to the action of the Poincaré group from the left and interpretable as external symmetries), transformations of a reference frame associated with an orientable object (corresponding to the action of the Poincaré group from the right and interpretable as internal symmetries) are applicable to orientable objects. In addition to the six quantum numbers assigned by the Casimir operators and the left generators, quantum numbers arise here that are assigned by the right generators and are associated with internal symmetries. The assumption that the internal symmetries of the theory of orientable objects are local leads to gauge theories describing the electroweak and gravitational interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg and I. E. Tamm, Zh. Eksp. Teor. Fiz., 17, 227–237 (1947).

    Google Scholar 

  2. V. Bargmann and E. P. Wigner, Proc. Nat. Acad. USA, 34, 211–223 (1948).

    Article  ADS  Google Scholar 

  3. H. Yukawa, Phys. Rev., 77, No. 2, 219–226 (1950).

    Article  ADS  Google Scholar 

  4. Yu. M. Shirokov, Zh. Eksp. Teor. Fiz., 21, No. 6, 748–760 (1951).

    Google Scholar 

  5. D. Finkelstein, Phys. Rev., 100, No. 3, 924–931 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Lurçat, Physics, 1, 95 (1964).

    Google Scholar 

  7. H. Bacry and A. Kihlberg, J. Math. Phys., 10, No. 12, 2132–2141 (1969).

    Article  ADS  Google Scholar 

  8. A. Kihlberg, Ann. Inst. Henri Poincaré, 13, No. 1, 57–76 (1970).

    MathSciNet  Google Scholar 

  9. M. Toller, Nuovo Cim., B44, No. 1, 67–98 (1978).

    Article  ADS  Google Scholar 

  10. S. M. Kuzenko, S. L. Lyakhovich, and A.Yu. Segal, Int. J. Mod. Phys., A10, No. 10, 1529–1552 (1995).

    Article  ADS  Google Scholar 

  11. S. L. Lyakhovich, A. Yu. Segal, and A. A. Sharapov, Phys. Rev., D54, No. 8, 5223–5238 (1996).

    ADS  Google Scholar 

  12. W. Drechsler, J. Math. Phys., 38, No. 11, 5531–5558 (1997).

    Article  ADS  Google Scholar 

  13. V. V. Varlamov, Int. J. Mod. Phys., A20, 4095–4112 (2005) [arXiv:math-ph/0310051].

  14. D. M. Gitman and A. L. Shelepin, Int. J. Theor. Phys., 40, 603–684 (2001) [arXiv:hep-th/0003146].

  15. I. L. Buchbinder, D. M. Gitman, and A. L. Shelepin, Int. J. Theor. Phys., 41, No. 4, 753–790 (2002). [arXiv:hep-th/0010035].

  16. D. M. Gitman and A. L. Shelepin, Eur. Phys. J., C61, No. 6, 111–139 (2009) [arXiv:hep-th/0901.2537].

  17. D. M. Gitman and A. L. Shelepin, Physica Scripta, 83, 015103 (2011) [arXiv:1001.5290].

  18. D. M. Gitman and A. L. Shelepin, Physica Scripta, 84, 055101 (2011).

    Article  ADS  Google Scholar 

  19. A. O. Barut and R. Raczka, Theory of Group Representations and Applications, PWN, Warsaw (1977).

    MATH  Google Scholar 

  20. D. M. Gitman, D. A. Petrusevich, and A. L. Shelepin, J. Phys., A47, 275401 (2014).

    ADS  Google Scholar 

  21. L. S. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, J. Wiley & Sons, New York (1981).

    MATH  Google Scholar 

  22. R. N. Zare, Angular Momentum. Understanding Spatial Aspects in Chemistry and Physics, J. Wiley & Sons, New York (1988).

    Google Scholar 

  23. E. P. Wigner, Ann. Math., 40, No. 1, 149–204 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Coleman and J. Mandula, Phys. Rev., 159, No. 5, 1251–1256 (1967).

    Article  ADS  Google Scholar 

  25. F. Gronvald and F. W. Hehl (1996) [arXiv: gr-qc/9602013].

  26. F. W. Hehl and Yu. N. Obukhov, Annales de la Fondation Louis de Broglie, 32, No. 1–2, 157–194 (2007). [arXiv:0711.1535 [gr-qc]].

  27. R. Aldrovandi and J. G. Pereira, An Introduction to Teleparallel Gravity: Lecture Notes (2007 (unpublished); available from: http://www.ift.unesp.br/gcg/tele.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Gitman.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 197–203, November, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitman, D.M., Shelepin, A.L. Orientable Objects in Relativistic Quantum Theory. Russ Phys J 59, 1962–1970 (2017). https://doi.org/10.1007/s11182-017-1002-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1002-1

Keywords

Navigation