Skip to main content
Log in

Numerical Computation of Dynamical Schwinger-like Pair Production in Graphene

  • Published:
Russian Physics Journal Aims and scope

The density of electron-hole pairs produced in a graphene sample immersed in a homogeneous time-dependent electric field is evaluated. Because low energy charge carriers in graphene are described by relativistic quantum mechanics, the calculation is performed within the strong field quantum electrodynamics formalism, requiring a solution of the Dirac equation in momentum space. The equation is solved using a split-operator numerical scheme on parallel computers, allowing for the investigation of several field configurations. The strength of the method is illustrated by computing the electron momentum density generated from a realistic laser pulse model. We observe quantum interference patterns reminiscent of Landau–Zener–Stückelberg interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Gusynin, S. Sharapov, and J. Carbotteб Int. J. Mod. Phys., B21, 4611 (2007).

  2. S. Teber, Phys. Rev., D86, 025005 (2012).

    ADS  Google Scholar 

  3. N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett., 102, 026807 (2009).

    Article  ADS  Google Scholar 

  4. I. V. Fialkovsky, V. N. Marachevsky, and D. V. Vassilevich, Phys. Rev., B84, 035446 (2011).

    Article  ADS  Google Scholar 

  5. D . Allor, T. D. Cohen, and D. A. McGady, Phys. Rev., D78, 096009 (2008).

    ADS  Google Scholar 

  6. S. P. Gavrilov, D. M. Gitman, and N. Yokomizo, Phys. Rev., D86, 125022 (2012).

    ADS  Google Scholar 

  7. T. C. Adorno, S. P. Gavrilov, and D. M. Gitman, Phys. Scr., 90, 074005 (2015).

    Article  ADS  Google Scholar 

  8. F. Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev., D82, 105026 (2010).

    ADS  Google Scholar 

  9. C. K. Dumlu and G. V. Dunne, Phys. Rev. Lett., 104, 250402 (2010).

    Article  ADS  Google Scholar 

  10. F. Gelis and N. Tanji, Progr. Part. Nucl. Phys., 87, 1 (2016).

    Article  ADS  Google Scholar 

  11. F. Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev., D78, 061701 (2008).

    ADS  Google Scholar 

  12. F. Hebenstreit, A. Ilderton, M. Marklund, and J. Zamanian, Phys. Rev., D83, 065007 (2011).

    ADS  Google Scholar 

  13. F. Fillion-Gourdeau, E. Lorin, and A. D. Bandrauk, Phys. Rev., A86, 032118 (2012).

    Article  ADS  Google Scholar 

  14. F. fillion-gourdeau and s. maclean, Phys. Rev., B92, 035401 (2015).

  15. J. W. Braun, Q. Su, and R. Grobe , Phys. Rev., A59, 604 (1999).

    Article  ADS  Google Scholar 

  16. G. R. Mocken and C. H. Keitel, J. Comp. Phys., 199, 558 (2004).

    Article  ADS  Google Scholar 

  17. H. Bauke and C. H. Keitel, Comp. Phys. Comm., 182, 2454 (2011).

    Article  ADS  Google Scholar 

  18. G. R. Mocken and C. H. Keitel, Comp. Phys. Comm., 178, 868 (2008).

    Article  ADS  Google Scholar 

  19. R. I. McLachlan and G. R. W. Quispel, Acta Num., 11, 341 (2002).

    Article  Google Scholar 

  20. M. Suzuki, Proc. Jpn. Acad. Ser., B69, 161 (1993).

    Article  Google Scholar 

  21. F. Fillion-Gourdeau, E. Lorin, and A. D. Bandrauk, Comp. Phys. Comm., 183, 1403 (2012).

    Article  ADS  Google Scholar 

  22. F. Fillion-Gourdeau, D. Gagnon, C. Lefebvre, and S. Maclean, arXiv:1607.02055 (2015).

  23. S. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep., 492, 1 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fillion-Gourdeau.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 127–131, November, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillion-Gourdeau, F., Blain, P., Gagnon, D. et al. Numerical Computation of Dynamical Schwinger-like Pair Production in Graphene. Russ Phys J 59, 1875–1880 (2017). https://doi.org/10.1007/s11182-017-0990-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-0990-1

Keywords

Navigation