Skip to main content
Log in

Multiphoton Amplitudes and Generalized LKF Transformation in Scalar QED Using the Worldline Formalism

  • Published:
Russian Physics Journal Aims and scope

We apply the worldline formalism to scalar quantum electrodynamics (QED) to find a Bern–Kosower type master formula for generalized Compton scattering, on-shell and off-shell. Moreover, we use it to study the non-perturbative gauge parameter dependence of amplitudes in scalar QED and, as our main result, find a simple non-perturbative transformation rule under changes of this parameter in x-space in terms of conformal cross ratios. This generalizes the well-known Landau–Khalatnikov–Fradkin transformation (LKFT). We also exemplify how this generilized LKFT works in perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Ball and T-W. Chiu, Phys. Rev., D22, 2542 (1980).

    ADS  Google Scholar 

  2. G. S. Adkins, M. Lymberopoulos, and D. D. Velkov, Phys. Rev., D50, 4194 (1994).

    ADS  Google Scholar 

  3. A. Kızılerısü, M. Reenders, and M. R. Pennington, Phys. Rev., D52, 1242 (1995).

    ADS  Google Scholar 

  4. A. Bashir, A. Kızılerısü, and M. R. Pennington, arXiv: 9907418 [hep-th] (2009).

  5. A. Bashir, A. Kızılerısü, and M. R. Pennington, Phys. Rev., D62, 085002 (2000).

    ADS  Google Scholar 

  6. A. Bashir and A. Raya, Phys. Rev., D64, 105001 (2001).

    ADS  Google Scholar 

  7. L. Landau and K. I. Khalatnikov, Sov. Phys. JETP, 2, 69 (1956).

    Google Scholar 

  8. E. S. Fradkin, Zh. Eksp. Teor. Fiz., 29, 268 (1955).

    Google Scholar 

  9. K. Johnson and B. Zumino, Phys. Rev. Lett., 3, 351 (1959); B. Zumino, J. Math. Phys., 1, 1 (1960).

  10. A. Bashir and R. Delbourgo, J. Phys., A37, 6587 (2004); A. Bashir and A. Raya, Phys. Rev., D66, 105005 (2002); A. Bashir, Phys. Lett., B491, 280 (2000); A. Bashir, L. X. Gutierrez-Guerrero, and Y. Concha-Sanchez, AIP Conf. Proc., 857, 279 (2006).

  11. D. C. Curtis and M. R. Pennington, Phys. Rev., D42, 4165 (1990).

    ADS  Google Scholar 

  12. Z. Dong, H. J. Munczek, and C. D. Roberts, Phys. Lett., B333, 536 (1994).

    Article  ADS  Google Scholar 

  13. A. Bashir, A. Kızılerısü, and M. R. Pennington, Phys. Rev., D57, 1242 (1998).

    ADS  Google Scholar 

  14. A. Kızılerısü and M. R. Pennington, Phys. Rev., D79, 125020 (2009).

    ADS  Google Scholar 

  15. L. Chang and C. D. Roberts, Phys. Rev. Lett., 103, 081601 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Bashir, R. Bermudez, L. Chang, and C. D. Roberts, Phys. Rev., C85, 045205 (2012).

    ADS  Google Scholar 

  17. M. J. Aslam, A. Bashir, and L. X. Gutierrez-Guerrero, arXiv: 1505.02645 [hep-th] (2015).

  18. N. Ahmadiniaz, A. Bashir, and C. Schubert, Phys. Rev., D93, 045023 (2016).

    ADS  Google Scholar 

  19. R. P. Feynman, Phys. Rev., 80, 440 (1950); ibid., 84, 108 (1951).

  20. M. J. Strassler, Nucl. Phys., B385, 145 (1992); Ph.D. Thesis, Stanford University (1993).

  21. M. G. Schmidt and C. Schubert, Phys. Lett., B318, 438 (1993).

    Article  ADS  Google Scholar 

  22. M. Reuter, M. G. Schmidt, and C. Schubert, Ann. Phys. (N. Y.), 259, 313 (1997).

    Article  ADS  Google Scholar 

  23. C. Schubert, Phys. Rep., 355, 73 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  24. Z. Bern and D. Kosower, Phys. Rev. Lett., 66, 1669 (1991); Nucl. Phys., B362, 389 (1991).

  25. N. Ahmadiniaz and C. Schubert, Nucl. Phys., B869, 417 (2013).

    Article  ADS  Google Scholar 

  26. J. S. Ball and T. W. Chiu, Phys. Rev., D22 2250 (1980); Erratum ibid., 23, 3085 (1981).

  27. N. Ahmadiniaz and C. Schubert, PoS QCD-TNT-III, 002 (2013).

  28. K. Daikouji, M. Shino, and Y. Sumino, Phys. Rev., D53, 4598 (1996).

    ADS  Google Scholar 

  29. A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys., 84, 1177 (2012).

    Article  ADS  Google Scholar 

  30. D. G. C. McKeon, Ann. Phys. (N. Y.), 224, 139 (1993).

    Article  ADS  Google Scholar 

  31. F. Bastianelli and P. van Nieuwenhuizen, Path Integrals and Anomalies in Curved Space, Cambridge University Press, Cambridge (2006).

  32. N. Ahmadiniaz, F. Bastianelli, and O. Corradini, Phys. Rev., D93, 049904 (2016); Ibid., 025035.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ahmadiniaz.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 28–34, November, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadiniaz, N., Bashir, A. & Schubert, C. Multiphoton Amplitudes and Generalized LKF Transformation in Scalar QED Using the Worldline Formalism. Russ Phys J 59, 1752–1760 (2017). https://doi.org/10.1007/s11182-017-0973-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-0973-2

Keywords

Navigation