Skip to main content
Log in

Electrical Properties of Carbon Foam in the Microwave Range

  • Published:
Russian Physics Journal Aims and scope

The possibility is shown of a directional change of the dielectric permittivity of carbon foam promising for the use in shielding devices in the microwave frequency range. The frequency dependences of the transmission (T) and reflection (R) coefficients in the Ka-band are experimentally analyzed for the foams with the reticular structure. By the methods of 3D-modeling, the effect of the skeleton conductivity and pore and windows size on the value of electromagnetic shielding provided by such a medium is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. S. Ostrovskii, E. N. Odarenko, and A. A. Shmat’ko, Fizicheskaya. Inzheniria Poverhnosti, 1, 161–173 (2003).

    Google Scholar 

  2. A. V. Korolenko, A. V. Buketov, B. V. Malygin, and E. I. Borisenko, Vestnik Khersonskoi Gosudarstvennoi Morskoi Akademii, No. 2, 111–118 (2013).

  3. V. Korolenko, V. A. Maslov, S. N. Trigub, and O. N. Tovstokoryi, Vestnik Khmel’nitskogo Natsionalnogo Universiteta, No. 2, 73–76 (2014).

  4. V. I. Suslyaev, O. V. Kazmina, B. S. Semukhin, Yu. P. Zemlyanukhin, and M. A. Dushkina, Russ. Phys. J., 56, No. 9, C. 990–996 (2014).

  5. Z. Fang, X. Cao, C. Li, et al., Carbon, 44, No. 15, 3368–3378 (2006).

    Article  Google Scholar 

  6. F. Moglie, D. Micheli, S. Laurenzi, et al., Carbon, 50, No. 5, 1972–1980 (2012).

    Article  Google Scholar 

  7. G. Tondi, V. Fierro, A. Pizzi, and A. Celzard, Carbon, 47, No. 6, 1480–1492 (2009).

    Article  Google Scholar 

  8. P. Jana, V. Fierro, and A. Celzard, Carbon, 62, 510–520 (2013).

    Article  Google Scholar 

  9. D. Bychanok, A. Plyushch, K. Piasotski, et al., Physica Scripta, 90, No. 9, 1–11 (2015).

    Article  Google Scholar 

  10. P. Kuzhir, A. Paddubskaya, M. Shuba, et al., J. Nanophoton., 6, No. 1, 061715 (2012).

    Article  ADS  Google Scholar 

  11. D. Micheli, R. B. Morles, M. Marchetti, et al., Carbon, 68, 149–15 (2014).

    Article  Google Scholar 

  12. M. Kırca, A. Gül, E. Ekinci, et al., Finite Elements in Analysis and Design, 44, 45– 52 (2007).

    Article  Google Scholar 

  13. L. James, S. Austin, C. A. Moore, et al., Carbon, 48, No. 9, 2418–2424 (2010).

    Article  Google Scholar 

  14. A. A. Kurushin and A. N. Plastikov, Design of Microwave Devices in the CST Microwave Studio Medium [in Russian], Izd. MEI, Moscow (2011).

    Google Scholar 

  15. N. C. Das and S. Maiti, J. Mater Sci., 43, 1920–1925 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Kuzhir.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 160–166, October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzhir, P.P., Letellier, M., Bychanok, D.S. et al. Electrical Properties of Carbon Foam in the Microwave Range. Russ Phys J 59, 1703–1709 (2017). https://doi.org/10.1007/s11182-017-0964-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-0964-3

Keywords

Navigation