Skip to main content

Advertisement

Log in

Influence of Hydrogen and Number of Particle Variants on Ordinary and Two-Way Shape Memory Effects in Ti–Ni Single Crystals

  • Published:
Russian Physics Journal Aims and scope

The ordinary and two-way shape memory effects (SMEs) are investigated for [\( \overline{1} \)12] single crystals of Ti–51.3Ni (at.%) alloy aged at 823 K for 1.5 h in free state and under tensile stress of 150 MPa without hydrogen and after saturation by hydrogen. It is established that without hydrogen in [\( \overline{1} \)12] single crystals with one and four variants of Ti3Ni4 particles the maximum magnitude of the ordinary SME is 1.9–2.6% under the external stress σext = 250 MPa. Under σext > 250 MPa, crystals are destroyed. The magnitude of the two-way SME caused by the B2–RB19' MT equal to 1.1% at σext = 0 is observed in [\( \overline{1} \)12] single crystals with one variant of Ti3Ni4 particles. The physical reason for the observed two-way SME is the internal compressive stresses oriented along the [\( \overline{1} \)12] directions arising from one variant of Ti3Ni4 particles as a result of aging under tensile stress of 150 MPa. It is established that hydrogen does not influence the TR temperature, reduces the plasticity, and suppresses the two-way SME. The suppression of two-way SME in the [\( \overline{1} \)12] single crystals of the Ti–51.3Ni (at.%) alloy with one variant of Ti3Ni4 particles is caused by shielding of stress fields from one variant of Ti3Ni4 particles and multiple nucleation of R- and B19' martensite variants under loading with saturation by hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge (1998).

    Google Scholar 

  2. K. Otsuka and X. Ren, Prog. Mater. Sci., 50, No. 5, 511–678 (2005).

    Article  Google Scholar 

  3. E. Yu. Panchenko, Yu. I. Chumlyakov, I. V. Kireeva, et al., Fiz. Met. Metalloved., 106, No. 6, 1–13 (2008).

    Google Scholar 

  4. E. Yu. Panchenko, Yu. I. Chumlyakov, and H. Maier, Russ. Phys. J., 57, No. 8, 1116–1125 (2014).

    Article  Google Scholar 

  5. J. Khalil-Allafi, A. Douhy, and G. Eggeler, Acta Mater., 50, 4255–4274 (2012).

    Article  Google Scholar 

  6. G. Fan, W. Chen, S. Yang, et al., Acta Mater., 52, 4351–4362 (2004).

    Article  Google Scholar 

  7. D. Karbakhsh Ravari, S. Farjami, and M. Nishida, Acta Mater., 69, 17–19 (2014).

    Article  Google Scholar 

  8. Yu. I. Chuymlyakov, E. Yu. Panchenko, V. B. Aksenov, et al., J. Phys. IV France, 115, 21–28 (2004).

    Article  Google Scholar 

  9. Yu. I. Chuymlyakov, E. Yu. Panchenko, I. V. Kireeva, et al., J. Phys. IV France, 112, 799–802 (2003).

    Article  Google Scholar 

  10. K. Gall, H. Sehitoglu, Yu. I. Chumlyakov, et al., J. Eng. Mater. Technol., 121, 19–27 (1999).

    Article  Google Scholar 

  11. K. Gall, H. Sehitoglu, Yu. I. Chumlyakov, et al., J. Eng. Mater. Technol., 121, 28–37 (1999).

    Article  Google Scholar 

  12. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransitive Phenomena and Martensitic Transformation [in Russian], Publising House of the Ural Division of the Russian Academy of Sciences, Ekaterinburg (1998).

    Google Scholar 

  13. V. N. Zhuravlev and V. G. Pushin, Alloys with Thermomechanical Memory and Their Application in Medicine [in Russian], Publishing House of the Ural Division of the Russian Academy of Sciences, Ekaterinburg (2000).

    Google Scholar 

  14. L. V. Spivak, Usp. Fiz. Nauk, 178, No. 9, 897–922 (2008).

    Article  Google Scholar 

  15. S. Miyazaki, S. Kimura, and K. Otsuka, Philos. Mag., A57, 467–478 (1988).

    Article  ADS  Google Scholar 

  16. S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki, Scripta Metall., 18, 883–888 (1984).

    Article  Google Scholar 

  17. L. Q. Chen and D. Y. Li, Acta Mater., 45, No. 2, 471–479 (1997).

    Article  Google Scholar 

  18. L. Q. Chen and D. Y. Li, Acta Mater., 46, No. 2, 639–649 (1998).

    Article  Google Scholar 

  19. Yu. I. Chumlyakov, E. Yu. Panchenko, I. V. Kireeva, et al., Dokl. Phys., 47, No. 7, 510–514 (2002).

    Article  ADS  Google Scholar 

  20. L. Q. Chen and D. Y. Li, Acta Mater., 45, No. 6, 2435–2442 (1997).

    Article  Google Scholar 

  21. T. Fukuda, A. Deguchi, T. Kakeshita, and T. Saburi, Mater. Trans. JIM, 38, No. 6, 514–520 (1997).

    Article  Google Scholar 

  22. B. L. Pelton, T. Slater, and A. R. Pelton, in: Proc. Second Int. Conf. on Shape Memory and Superelastic Technologies SMST-97, California (1997), pp. 395–400.

  23. I. A. Stepanov, Yu. M. Flomenblit, and V. A. Zaimovskii, Fiz. Met. Metalloved., 55, No. 3, 612–614 (1983).

    Google Scholar 

  24. Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., Russ. Phys. J., 54, No. 8, 937–950 (2011).

    Article  Google Scholar 

  25. I. V. Kireeva, Yu. I. Chumlyakov, and Yu. N. Platonova, Tech. Phys. Lett., 41, No. 3, 284–287 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kireeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 37–43, October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kireeva, I.V., Platonova, Y.N. & Chumlyakov, Y.I. Influence of Hydrogen and Number of Particle Variants on Ordinary and Two-Way Shape Memory Effects in Ti–Ni Single Crystals. Russ Phys J 59, 1560–1566 (2017). https://doi.org/10.1007/s11182-017-0944-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-0944-7

Keywords

Navigation