Skip to main content
Log in

Magnetic Properties of Iron Oxide Nanoparticles Obtained by Laser Evaporation

  • Published:
Russian Physics Journal Aims and scope

The paper concentrates on a synthesis of spherical magnetic particles obtained by laser evaporation under various process conditions. Depending on the process conditions, which include the pressure in a process chamber, laser pulse duration, mean laser power, and the type of power gas, the stoichiometry of the material ranges from Fe 2.70 O 4 to Fe 2.84 O 4 , while the average diameter of nanoparticles ranges between 10–23 nm. The nanoparticles have an inverse spinel structure. In terms of the magnetic properties, the samples are a superparamagnetic ensemble. The spherical shape of the majority of nanoparticles as well as the existence of merely one magnetic phase are verified by the characteristics of microwave absorption. A relatively high saturation magnetization and a narrow size distribution of small nanoparticles obtained at 700 mmHg working pressure, 100 ms pulse duration, and 200 W laser power allow the authors to consider these conditions to be the most optimum for the nanopowder synthesis and recommend them for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Jun, J.-W. Seo, J. Cheon, Acc. Chem. Res., 41, No. 2, 179 (2008).

    Article  Google Scholar 

  2. S. Laurent, S. Dutz, U. O. Häfel, M. Mahmoudi, Adv. Col. Interface Sci., 166, No. 1–2, 8–23 (2011).

    Article  Google Scholar 

  3. Q. A. Pankhrust, J. Connolly, S. K. Jones, J. J. Dobson, Phys. D: Appl. Phys., 36, 167–177 (2003).

    Article  ADS  Google Scholar 

  4. I. S. Lyubutin, C. R. Lin, Yu. V. Korzhetskiy, et al., J. Appl. Phys., 106, 034311 (2009).

    Article  ADS  Google Scholar 

  5. S. O. Volchkov, A. V. Svalov, G. V. Kurlyandskaya, Russ. Phys. J., 52, No. 8, 769–776 (2009).

    Article  Google Scholar 

  6. J. H. Grossman and S. E. McNeil, Phys. Today, 65, 38 (2012).

    Article  Google Scholar 

  7. Yu. A. Kotov, J. Nanoparticle Res., 5, 539 (2003).

    Article  Google Scholar 

  8. V. V. Osipov, V. V. Platonov, M. A. Uimin, A. V. Podkin, Tech. Phys., 57, 543 (2012).

    Article  Google Scholar 

  9. A. P. Safronov, I. V. Beketov, S. V. Komogortsev, et al., AIP Adv., 3, 052135 (2013).

    Article  ADS  Google Scholar 

  10. P. Scherrer, Nachr. Ges. Wiss. Göttingen, 26, 98 (1918).

    Google Scholar 

  11. I. V. Beketov, A. P. Safronov, A. I. Medvedev, et al., AIP Adv., 2, 022154 (2012).

    Article  ADS  Google Scholar 

  12. A. B. Rinkevich, A. V. Korolev, M. I. Samoylovich, et al., JMMM, 399, 216–220 (2016).

    Article  ADS  Google Scholar 

  13. V. V. Srinivasu, S.E. Lofland, S. M. Bhagat, et al., J. Appl. Phys., 86, 1067 (1999).

    Article  ADS  Google Scholar 

  14. W. B. Pearson, Handbook of Lattice Spacing Structures of Metals and Alloys, Pergamon Press, London (1958).

    Google Scholar 

  15. F. J. Owens, J. Phys. Chem. Solids, 64, 2289 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iu. P. Novoselova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 147–153, September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoselova, I.P., Samatov, O.M., Kupriyanova, G.S. et al. Magnetic Properties of Iron Oxide Nanoparticles Obtained by Laser Evaporation. Russ Phys J 59, 1491–1497 (2017). https://doi.org/10.1007/s11182-017-0935-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-0935-8

Keywords

Navigation