Skip to main content
Log in

Down-Conversion of Short-Wavelength Radiation in LBO Crystal

  • Published:
Russian Physics Journal Aims and scope

Comparative model analysis of the possibilities of down-conversion into the terahertz (THz) frequency range of radiation of all-solid-state femtosecond Ti:Sapphire laser systems and hybrid systems based on the same type lasers and equipped with amplifiers on XeF(C-A) and XeCl(C-A) molecules of excimer gases with harmonic generators on nonlinear LBO crystals is performed. It is established that when the crystal is cooled to a temperature of 80 K, the coefficient of optical losses in the frequency range from 0.2 to 1.5 THz linearly decreases in the direction of the X axis by 5–6 times down to 0.1–0.2 cm–1. It is shown that the use of hybrid laser systems as pumping sources will allow the power of generated THz pulses to be increased from 3.5 to 20 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hebling, K.-L. Yeh, M. C. Hoffmann, et al., J. Opt. Soc. Am., B25, No. 7, B6–B19 (2008).

    Article  ADS  Google Scholar 

  2. A. G. Stepanov, S. Henin, Y. Petit, et al., Appl. Phys., B101, 11–14 (2010).

    Article  ADS  Google Scholar 

  3. A. Kokh, N. Kononova, G. Mennerat, et al., J. Cryst. Growth, 312, 1774–1778 (2010).

    Article  ADS  Google Scholar 

  4. K. A. Kokh, J. F. Molloy, M. Naftaly, et al., Mater. Chem. Phys., 154, 152–157 (2015).

    Article  Google Scholar 

  5. Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, et al., Sov. J. Quantum Electron., 17, No. 11, 1435–1436 (1987).

    Article  ADS  Google Scholar 

  6. C. Stolzenburg, W. Schule, I. Zawischa, et al., Proc. SPIE, 7578, Art. No. 75780A, 1–9 (2010).

  7. U. L. Dexeimer, ed., Terahertz Spectroscopy: Principles and Applications, CRC Press, Boca Raton (2008).

    Google Scholar 

  8. W. Shi and Y. J. Ding, Appl. Phys. Lett., 84, No. 10, 1635–1637 (2004).

    Article  ADS  Google Scholar 

  9. S. V. Alekseev, A. I. Aristov, N. G. Ivanov, et al., Laser Particle Beams, 31, No. 1, 17–21 (2013).

    Article  Google Scholar 

  10. V. D. Zvorykin, A. O. Levchenko, and N. N. Ustinovskii, Quantum Electron., 40, No. 5, 381–385 (2010).

    Article  ADS  Google Scholar 

  11. A. V. Abarenov, I. G. Persiantsev, A. T. Rakhimov, et al., Quantum Electron., 21, No. 7, 711–716 (1991).

    ADS  Google Scholar 

  12. I. V. LBOnskyy, A. V. Gnatovskyy, N. G. Zubrilin, et al., Semicond. Phys., Quantum Electron. Optoelectron., 7, No. 3, 301–303 (2004).

    Google Scholar 

  13. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer, New York (2005).

    Google Scholar 

  14. C. Chen, Y. Wu, A. Jiang, et al., J. Opt. Soc. Am., B6, No. 4, 616–621 (1989).

    Article  ADS  Google Scholar 

  15. K. Kato, IEEE J. Quantum Electron., 26, No. 7, 1173–1175 (1990).

    Article  ADS  Google Scholar 

  16. N. Waasem, S. Fieberg, J. Hauser, et al, Rev. Sci. Instrum., 84, 1–8 (2013).

    Article  Google Scholar 

  17. Y. Furukawa, S. A. Markgraf, M. Sato, et al., Appl. Phys. Lett., 65, 1480–1482 (1994).

    Article  ADS  Google Scholar 

  18. J. Guo, J. J. Xie, D. J. Li, et al., Light: Sci. Appl., 4, 1–12 (2015).

    Article  Google Scholar 

  19. Yu. M. Andreev, M. Naftaly, J. F. Molloy, et al., Laser Phys. Lett., 12, 1–3 (2015).

    Article  Google Scholar 

  20. V. A. Svetlichnyi, M. Naftaly, J. F. Molloy, et al., Opt. Commun., 365, 14–15 (2016).

    Article  ADS  Google Scholar 

  21. V. D. Anttsygin, A. A. Mamsharov, N. A. Nikolaev, et al., Opt. Commun., 309, 333–337 (2013).

    Article  ADS  Google Scholar 

  22. S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, et al., Russ. Phys. J., 58, No. 8, 1087–1092 (2015).

    Article  Google Scholar 

  23. G. V. Lanskii and A. V. Shaiduko, RF Certificate of State Registration of Computer Program No. 2009611200 (February 26, 2009).

  24. H. Voges and G. Marowsky, IEEE J. Quantum Electron., 24, No. 5,827–832 (1988).

    Article  ADS  Google Scholar 

  25. L. N. Litzenberger and M. J. Smith, IEEE J. Quantum Electron., 31, No. 3, 546–554 (1995).

    Article  ADS  Google Scholar 

  26. R. L. Aggarwal and B. Lax, Nonlinear Infrared Generation, Y. R. Shen, ed., Springer, New York, (1977).

  27. Y. J. Ding and W. Shi, J. Nonlinear Opt. Phys. Mater., 12, No. 4, 557–585 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Zernike and J. E. Midwinter, Applied Nonlinear Optics, John Willey & Sons, New York (1973).

    Google Scholar 

  29. T. Ozaki, J.-C. Kieffer, R. Toth, et al., Laser Particle Beams, 24, 101–106 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kononova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 164–171, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononova, N.G., Kokh, A.E., Kokh, K.A. et al. Down-Conversion of Short-Wavelength Radiation in LBO Crystal. Russ Phys J 59, 1307–1315 (2016). https://doi.org/10.1007/s11182-016-0907-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0907-4

Keywords

Navigation