Russian Physics Journal

, Volume 59, Issue 8, pp 1145–1152 | Cite as

Radiative p 16O Capture at Astrophyiscal Energies


Within the framework of the modified potential cluster model with forbidden states and classification of states according to the Young tableaux, the possibility is considered of describing experimental data for the astrophysical S-factor of radiative p 16O capture to the ground state of the 17F nucleus. It is shown that on the basis of E1 transitions from p 16O scattering states to the ground state of 17F in the p 16O channel overall success is achieved in explaining the magnitude of the measured cross sections at astrophysical energies.


nuclear physics light atomic nuclei low and astrophysical energies elastic scattering p16O system potential description radiative capture total cross sections thermonuclear reactions potential cluster model forbidden states classification of orbital states according to the Young tableaux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. B. Dubovitchenko and A. V. Dzhazairov-Kakhramanov, Yad. Fiz., 57, No. 5, 784–791 (1994).Google Scholar
  2. 2.
    V. G. Neudatchin, A. A. Sakharuk, and S. B. Dubovitchenko, Few-Body Systems, 18, No. 2-4, 159–172 (1995); S. B. Dubovitchenko and A. V. Dzhazairov-Kakhramanov, Ann. Phys., 524, No. 12, 850–861 (2012); S. B. Dubovichenko, A. V. Dzhazairov-Kakhramanov, N. Burtebaev, and D. Alimov, Mod. Phys. Lett., A29, No. 24, 1450125(1–16) (2014); S. B. Dubovichenko, Russ. Phys. J., 54, No. 2, 157 (2012); 55, No. 2, 138–145 (2011).Google Scholar
  3. 3.
    S. B. Dubovichenko, Light Nuclei and Nuclear Astrophysics [in Russian], Lambert Academic Publishing, Saarbrücken, Germany (2013).Google Scholar
  4. 4.
    S. B. Dubovichenko, Calculation Methods of Nuclear Characteristics [in Russian], Lambert Academic Publishing, Saarbrücken, Germany (2012).Google Scholar
  5. 5.
    S. B. Dubovichenko and M. A. Zhusupov, Izv. Akad. Nauk SSSR, Ser. Fizich., 48, 935–937 (1984); Yad. Fiz., 39, 1378–1381 (1984).Google Scholar
  6. 6.
    O. F. Nemets et al., Nucleon Associations in Atomic Nuclei and Nuclear Reactions with Multi-Nucleon Transfer [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  7. 7.
    V. I. Kukulin, N. V. Pomerantsev, S. G. Cooper, and S. B. Dubovichenko, Phys. Rev., C57, No. 5, 2462–2473 (1998).ADSGoogle Scholar
  8. 8.
    S. B. Dubovichenko, Thermonuclear Processes in Stars and Universe, Scholar’s Press, Saarbrucken, Germany (2015).Google Scholar
  9. 9.
    S. B. Dubovichenko, Radiative Neutron Capture and Primordial Nucleosynthesis of the Universe [in Russian], Lambert Academic Publishing, Saarbrücken, Germany (2016).Google Scholar
  10. 10.
    C. Itzykson and M. Nauenberg, Rev. Mod. Phys. 38, 95–101 (1966).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    V. G. Neudatchin and Yu. F. Smirnov, Nucleon Associations in Light Nuclei [in Russian], Nauka, Moscow (1969).Google Scholar
  12. 12.
    D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys., A564, 1–183 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    S. R. Salisbury and H. T. Richards, Phys. Rev., 126, 2147–2158 (1962).ADSCrossRefGoogle Scholar
  14. 14.
    R. R. Henry, G. C. Phillips, C. W. Reich, and J. L. Russell, Bull. Amer. Phys. Soc., 1, 96 (1956).Google Scholar
  15. 15.
    S. Salisbury, G. Hardie, L. Oppliger, and R. Bangle, Phys. Rev., 126, 2143– 2146 (1962).ADSCrossRefGoogle Scholar
  16. 16.
    R. A. Blue and W. Haeberli, Phys. Rev., 137, No. 2B, B284–B293 (1965).ADSCrossRefGoogle Scholar
  17. 17.
    V. Gomes, R. A. Douglas, T. Polga, and O. Sala, Nucl. Phys., A68, 417–425 (1965).CrossRefGoogle Scholar
  18. 18.
    W. Trachslin and L. Brown, Nucl. Phys., A101, 273–287 (1967.ADSCrossRefGoogle Scholar
  19. 19.
    R. Amirikas, D. N. Jamieson, and S. P. Dooley, Nucl. Instrum. Methods Phys. Res., B77, 110–116 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    A. F. Gurbich, Nucl. Instrum. Methods Phys. Res., B129, 311–316 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    M. Braun and T. Fried, Z. Phys., A311, 173–175 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    A. R. Ramos et al., Nucl. Instrum. Methods Phys. Res., B190, 95–99 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    R. Morlock et al., Phys. Rev. Lett., 79, 3837–3840 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    H. C. Chow, G. M. Griffiths, and T. H. Hall, Can. J. Phys., 53, 1672–1687 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    M. Luomajarvi, E. Rauhala, and M. Hautala, Nucl. Instr. Meth., B9, 255–258 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    C. Barbieri and B. K. Jennings, Nucl. Phys., A758, 395c–398c (2005).Google Scholar
  27. 27.
    G. R. Plattner and R. D. Viollier, Nucl. Phys., A365, 8–12 (1981).ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    S. V. Artemov et al., Izv. RAN, Ser. Fizich., 73, 176–181 (2009).Google Scholar
  32. 32.
    C. A. Gagliardi et al., Phys. Rev., C59, 1149–1153 (1999).ADSGoogle Scholar
  33. 33.
    C. Iliadis et al., Phys. Rev., C77, 045802 (2008).ADSGoogle Scholar
  34. 34.
    D. Baye, P. Descouvemont, and M. Hesse, Phys. Rev., C58, 545–553 (1998).ADSGoogle Scholar
  35. 35.
    C. Rolfs, Nucl. Phys., A217, 29–70 (1973).ADSCrossRefGoogle Scholar
  36. 36.
    P. Mohr and C. Iliadis, Nucl. Instr. Meth., A688, 62–65 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.V. G. Fesenkov Astrophysical Institute of the National Center for Space Research and Technology of the Ministry of Defense and Aerospace Industry of the Republic of KazakhstanAlmatyRepublic of Kazakhstan

Personalised recommendations