Russian Physics Journal

, Volume 59, Issue 8, pp 1135–1144 | Cite as

Algebraic Representation of the Group of Havrda–Charvat–Daroczy Entropy Vectors in Nonextensive Statistical Mechanics

Article
  • 12 Downloads

An algebraic representation of the group of nonextensive, parameterized Havrda–Charvat–Daroczy entropy vectors that depend on three distributions is constructed. The composition law of conformally-generalized hypercomplex numbers is considered, and properties of a commutative, nonassociative algebra are derived. The exponential form of the number and functions of numbers with hyperbolic angles are presented.

Keywords

nonextensivity entropy group algebra geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Springer, New York (2009).MATHGoogle Scholar
  2. 2.
    R. G. Zaripov, Principles of Non-Extensive Statistical Mechanics and The Geometry of Measures of Disorder and Order [in Russian], Publishing House of Kazan’ State Pedagogical University, Kazan’ (2010).Google Scholar
  3. 3.
    J. Naudts, Generalized Thermostatistics, Springer, Berlin (2011).CrossRefMATHGoogle Scholar
  4. 4.
    N. Bourbaki, Elements of Mathematics: Integration, Springer, Berlin (2004).CrossRefMATHGoogle Scholar
  5. 5.
    I. J. Taneja, Advances in Electronics and Electron Physics, 76, 327 (1989); accessible at http:/www.mtm.ufsc.br/~taneja/book.
  6. 6.
    R. G. Zaripov, New Measures and Methods in Information Theory [in Russian], Publishing House of Kazan’ State Pedagogical University, Kazan’ (2005).Google Scholar
  7. 7.
    A. Renyi, Probability Theory, North-Holland Publ. Co., Amsterdam (1970).MATHGoogle Scholar
  8. 8.
    J. Feder, Fractals, Plenum Press, New York (1988).CrossRefMATHGoogle Scholar
  9. 9.
    J. Havrda and F. Charvat, Kybernetika, 3, 30 (1967).MathSciNetGoogle Scholar
  10. 10.
    Z. Daroczy, Inform. Control, 16, 36 (1970).MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. G. Zaripov, Russ. Phys. J., 52, No. 2, 200 (2009).MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. G. Zaripov, Russ. Phys. J., 55, No. 1, 17 (2012).MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. G. Zaripov, J. Phys.: Conf. Ser., 394, 1 (2012).Google Scholar
  14. 14.
    R. G. Zaripov, Russ. Phys. J., 57, No. 1, 6 (2014).CrossRefGoogle Scholar
  15. 15.
    R. G. Zaripov, in: Recent Problems in Field Theory 2005–2006 [in Russian], A. V. Aminova, ed., Publishing House of Kazan’ University (2007).Google Scholar
  16. 16.
    H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin (1959).CrossRefMATHGoogle Scholar
  17. 17.
    R. G. Zaripov, Russ. Phys. J., 59, No. 2, 240 (2016).CrossRefGoogle Scholar
  18. 18.
    R. G. Zaripov, Russ. Phys. J., 57, No. 7, 861 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Mechanics and Machine Building of the Kazan’ Scientific Center of the Russian Academy of SciencesKazan’Russia

Personalised recommendations