Skip to main content
Log in

Dipole Spin Polarizabilities and Gyrations of Spin-One Particles in the Duffin–Kemmer–Petiau Formalism

  • Published:
Russian Physics Journal Aims and scope

In the Duffin–Kemmer–Petiau formalism, on the basis of a covariant model taking account of the spin polarizabilities and gyrations of spin-one particles, relativistic-invariant phenomenological Lagrangians of the interaction of the electromagnetic field with these moments have been obtained. It is shown that in the proposed covariant model with cross symmetry, parity conservation laws, and gauge invariance taken into account, certain spin polarizabilities and gyrations of a spin-one particle contribute to the expansion of the Compton scattering amplitude, starting at the corresponding orders in the radiation frequency in agreement with low-energy theorems for this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Maksimenko and L. G. Moroz, in: Proc. XIth International School of Young Scientists in High Energy Physics and Relativistic Nuclear Physics [in Russian], Dubna (1979), pp. 533–543.

  2. F. I. Fedorov, Theory of Gyrotropy [in Russian], Nauka i Tekhnika, Minsk (1976).

    Google Scholar 

  3. P. F. Bedaque and M. J. Savage, Phys. Rev., C62, 018501(1–6) (2000).

  4. M. Gorchtein and X. Zhang, Forward Compton Scattering with Neutral Current: Constraints from Sum Rules [Electronic resource], Mode of access: http://www.nucl-th/1501.0535v1 (2015).

  5. N. V. Maksimenko, Dokl. Akad. Nauk Belarusi, 36, No. 6, 508–510 (1992).

    Google Scholar 

  6. M. I. Levchuk and L. G.Moroz, Proc. Acad. Sci. BSSR. Ser. Fiz.-Mat. Navuk, No. 1, 45–54 (1985).

  7. A. A. Bogush, V. V. Kisel, M. I. Levchuk, and L. G. Moroz, Covariant Methods in Theoretical Physics. Physics of Elementary Particles and Theory of Relativity [in Russian], Publising House of the Institute of Physics, Minsk (1981), pp. 81–90.

    Google Scholar 

  8. V. V. Andreev and N. V. Maksimenko, Probl. Fiz., Matem. i Tekh., No. 4 (9), 7–11 (2011).

  9. N. V. Maksimenko and O. M. Deryuzhkova, Vestsi NAN Belarusi, Ser. Fiz.-Mat. Navuk, No. 2, 27–30 (2011).

  10. A. Ilyichev, S. Lukashevich, and N. Maksimenko, Static polarizability vertex and its applications [Electronic resource], Mode of access: arXiv://hep-ph/0611327v1 (2006).

  11. Y. Zhang and K. Savvidy, Phys. Rev., C88, 064614(1–12) (2013).

  12. B. R. Holstein and S. Scherer, Hadron Polarizabilities [Electronic resource], Mode of access: http://www.hepph/1401.0140v1 (2013).

  13. C. E. Carlson and M. Vanderhaeghen, Constraining off-shell effects using low-energy Compton scattering [Electronic resource], Mode of access: http://physics.atom-ph/1109.3779 (2011).

  14. S. Raguza, Phys. Rev., D47, No. 9, 3757–3767 (1993).

    ADS  Google Scholar 

  15. S. Raguza, Phys. Rev., D49, No. 7, 3157–3159 (1994).

    ADS  Google Scholar 

  16. D. Babusci et al., Phys. Rev., C58, 1013–1041 (1998).

    ADS  Google Scholar 

  17. J. W. Chen et al., Nucl. Phys., A644, 221–234 (1998).

    Article  ADS  Google Scholar 

  18. J. L. Friar and G. L. Payne, Phys. Rev., C72, 014004-1–014004-6 (2005).

  19. K. Y. Lin and J. C. Chen, J. Phys.: Nucl. Phys., G1, 394–399 (1975).

    Article  ADS  Google Scholar 

  20. F. Hagelstein, Sum Rules for Electromagnetic Moments and Polarizabilities of Spin-1 Particles in Massive Yang-Mills QED (2014).

  21. J. S. Anandan, Phys. Rev. Lett., 85, 1354–1357 (2000).

    Article  ADS  Google Scholar 

  22. V. V. Andreev, O. M. Deryuzhkova, and N. V. Maksimenko, Probl. Fi., Matem. Tekh., No. 3(20), 7–12 (2014).

  23. M. V. Golynskii and F. I. Fedorov, Zh. Prikl. Spektr., 44, No. 2, 288–292 (1986).

    Google Scholar 

  24. V. G. Baryshevskii, Nuclear Optics of Polarized Media [in Russian], Energoatomizdat, Mosocw (1995).

    Google Scholar 

  25. E. V. Vakulina and N. V. Maksimenko, Probl. Fi., Matem. Tekh., No. 3, 16–18 (2013).

  26. N. V. Maksimenko, E. V. Vakulina, and S. M. Kuchin, Phys. Part. Nucl. Lett., 12, No. 7, 807–812 (2015).

    Article  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields. Vol. 2, Pergamon Press, Oxford (1971).

    MATH  Google Scholar 

  28. A. A. Borush, Introduction to Gauge Field Theory of Electroweak Interactions [in Russian], Nauka i Tekhnika, Minsk (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Maksimenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 106–112, June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimenko, N.V., Vakulina, E.V. & Kuchin, S.M. Dipole Spin Polarizabilities and Gyrations of Spin-One Particles in the Duffin–Kemmer–Petiau Formalism. Russ Phys J 59, 875–883 (2016). https://doi.org/10.1007/s11182-016-0848-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0848-y

Keywords

Navigation