Skip to main content
Log in

Comparison of the Efficiency of Cavityless Lasing in Thin Layers of the Active Medium with Agglomerates of Ag, Al, and Al2O3 Nanoparticles

  • Published:
Russian Physics Journal Aims and scope

Characteristics of cavityless lasing in thin layers of rhodamine 6G (R6G) solutions doped with aluminum, silver, and aluminum oxide agglomerated nanoparticles are experimentally investigated. It is demonstrated that the agglomerates of Ag, Al, and Al2O3 nanoparticles in R6G solutions lead to a significant (by more than two orders of magnitude) decrease of the cavityless lasing threshold in a wide range of concentrations of the agglomerates compared to the luminescence threshold in R6G solution without nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Letokhov, Soviet Physics JETP, 26, No. 4, 835–840 (1968).

    ADS  Google Scholar 

  2. V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, Zh. Prikl. Spektrosk., 45, 847–850 (1986).

    Google Scholar 

  3. D. S. Wiersma and A. Lagendijk, Phys. Rev., E54, 4256–4265 (1996).

    ADS  Google Scholar 

  4. V. V. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, Springer Verlag, New York; Berlin; Heidelberg (2000).

  5. W. L. Sha, C.-H. Liu, and R. R. Alfano, Opt. Lett., 19, No. 23, 1922–1924 (1994).

    Article  ADS  Google Scholar 

  6. N. M. Lawandy, R M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London), 368, 436–438 (1994).

  7. M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun., 118, 430–434 (1995).

    Article  ADS  Google Scholar 

  8. N. G. Khlebtsov, Kvant. Elektron., 38, No. 6, 504–529 (2008).

    Article  ADS  Google Scholar 

  9. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  10. S. V. Karpov and V. V. Slabko, Optical and Photophysical Properties of Fractal-Structured Metal Sols [in Russian], Publishing House of the Siberian Branch of Russian Academy of Sciences, Novosibirsk (2003).

    Google Scholar 

  11. L. A. Sweatlock, S. A. Maier, and H. A. Atwater, Phys. Rev., 62, 10265–10287 (2005).

    Google Scholar 

  12. A. Zhdanov, M. P. Kreuzer, S. Rao, et al., Opt. Lett., 33, No. 23, 2749–2751 (2008).

    Article  ADS  Google Scholar 

  13. A. D. Bulygin, V. A. Kharenkov, Al. A. Zemlyanov, et al., in: Materials of the XXth Int. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics,” Novosibirsk (2014), pp. B193–B196.

  14. V. A. Donchenko, Al. A. Zemlyanov, N. S. Krivosheev, et al., Opt. Atm. Okeana., 25, No. 11, 999–1002 (2012).

  15. V. V. Klimov, M. Ducloy, and V. S. Letokhov, Kvant. Elektron., 31, No. 7, 569–586 (2001).

    Article  ADS  Google Scholar 

  16. D. V. Guzatov and V. V. Klimov, Kvant. Elektron., 35, No. 10, 861–865 (2005).

    ADS  Google Scholar 

  17. N. A. Yavorovskii, “Electric explosion of conductors – method of producing ultradispersed powders,” Candidate’s Dissert. Tech. Sci., Tomsk (1986).

    Google Scholar 

  18. V. I. Davydovich, “Development of technological process and equipment for electroexplosive preparation of metal powders with low electric conductivity,” Candidate’s Dissert. Tech. Sci., Tomsk (1986).

    Google Scholar 

  19. A. P. Il’in, O. B. Nazarenko, D. V. Tikhonov, et al., Izv. Tomskogo Politekh. Univ., 308, No. 4, 68–70 (2005).

    Google Scholar 

  20. A. P. Yavorovskii, A. B. Pustovalov, G. L. Lobanova, et al., Izv. Vyssh. Ucheb. Zaved., Fizika, 55, No. 6/2, 236–243 (2012).

  21. A. V. Korshunov and A. P. Il’in, Izv. Tomskogo Politekh. Univ., 312, No. 3, 11–15 (2008).

    Google Scholar 

  22. Yu. A. Kotov, I. V. Beketov, A. I. Medvedev, et al., Nanotech. Russia, 4, No. 5, 354–358 (2009).

  23. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett., 96, 113002 (2006).

    Article  ADS  Google Scholar 

  24. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Principles of Atmospheric Optics: Educational Handbook for Higher Educational Institutions [in Russian], Saint Petersburg (2007).

  25. F. P. Shefer, ed., Dye Lasers [In Russian], Mir, Moscow (1976).

  26. T. N. Kopylova, V. A. Svetlichnyi, G. V. Mayer, et al., Russ. Phys. J., 46, No. 5, 470–477 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Donchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 97–102, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donchenko, V.A., Zhuravkov, S.P., Zemlyanov, A.A. et al. Comparison of the Efficiency of Cavityless Lasing in Thin Layers of the Active Medium with Agglomerates of Ag, Al, and Al2O3 Nanoparticles. Russ Phys J 58, 1775–1781 (2016). https://doi.org/10.1007/s11182-016-0716-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0716-9

Keywords

Navigation