Skip to main content
Log in

The Effect of Graphene Shape on its Ability to Separate Gases

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

A new integrable modification of the LJ-potential and a continual approach are used to investigate the interaction between a thin film (graphene) and gas molecules. It is shown that this technique allows determining the characteristics of a van der Waals-type interaction between molecules and graphene films of a variety of shapes. It is found that an unperforated graphene (planar or buckled) is impermeable for molecules with the energies consistent to the room temperature of a gaseous medium; hence, it has to be perforated in order to be used as a separator. Penetration of the molecules through the openings in a buckled graphene is somewhat different from that through a planar graphene, though these differences are insignificant. It is demonstrated that the data obtained on the planar graphene (most useful for theoretical research) are also valid for the really existing buckled (ruled-surface or chessboard) graphenes. When a graphene is used as a separator, its shape does not play the leading role in determining its principal property – permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Korznikov, Yu. A. Baimova, S. V. Dmitriev, et al., Russ. Phys. J., 58, No. 8, 1058–1062 (2015).

    Article  Google Scholar 

  2. S. Goler, C. Coletti, et al., J. Phys. Chem. C, 117, No. 22, 11506– 11513 (2013).

    Article  Google Scholar 

  3. E.J.G. Santos, S. R. Riiikonen, D. Sanchez-Portal, and A. Ayuela, J. Phys. Chem. C, 116, No. 13, 7602–7606 (2012)

    Article  Google Scholar 

  4. Z. F. Wang, Y. Zhang, and F. Liu, Phys. Rev., 83, 041403 (2011).

    Article  ADS  Google Scholar 

  5. J.-J. Shao, Z.-J. Li, C. Zhang, et al., J. Mater. Chem. A, 2, 1940–1946 (2014).

    Article  Google Scholar 

  6. M. A. Bubenchikov, A. M. Bubenchikov, A. I. Potekaev, et al., Russ. Phys. J., 58, No. 7, 82–888 (2015).

    Article  Google Scholar 

  7. M. A. Bubenchikov, A. M. Bubenchikov, A. I. Potekaev, et al., Russ. Phys. J., 57, No. 8, 126–1131 (2014).

    Article  Google Scholar 

  8. M. A. Bubenchikov, A. M. Bubenchikov, A. I. Potekaev, et al., Russ. Phys. J., 57, No. 7, 956–962 (2014).

    Article  Google Scholar 

  9. A. M. Bubenchikov, M. A. Bubenchikov, A. I. Potekaev, et al., Adv. Nanopart., 3, 1–5 (2014).

    Article  Google Scholar 

  10. M. A. Bubenchikov, A. M. Bubenchikov, A. I. Potekaev, et al., Russ. Phys. J., 56, No. 7, 785–790 (2013).

    Article  MathSciNet  Google Scholar 

  11. A. M. Bubenchikov, M. A. Bubenchikov, A. I. Potekaev, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 57, No. 8/2, 71–77 (2014).

    Google Scholar 

  12. A. M. Bubenchikov, M. A. Bubenchikov, A. I. Potekaev, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 57, No. 8/2, 66–71 (2014).

    Google Scholar 

  13. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point- and Planar Defects on Structural-Phase Transformations in Pre-Transition Region of Metallic Systems [in Russian], NTL Publ., Tomsk (2014).

    Google Scholar 

  14. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev, and L. S. Grinkevich, Russ. Phys. J., 57, No. 12, 1676–1682 (2015).

    Article  Google Scholar 

  15. S. V. Makarov, V. A. Plotnikov, and A. I. Potekaev, Russ. Phys. J., 57, No. 7, 950–955 (2014).

    Article  Google Scholar 

  16. S. V. Makarov, V. A. Plotnikov, and A. I. Potekaev, Russ. Phys. J., 57, No. 4, 436–440 (2014).

    Article  Google Scholar 

  17. S. V. Makarov, V. A. Plotnikov, and A. I. Potekaev, Russ. Phys. J., 56, No. 6, 630–637 (2013).

    Article  Google Scholar 

  18. A. I. Potekaev, V. V. Kulagina, A. A. Chaplygina, et al., Russ. Phys. J., 56, No. 6, 620–629 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bubenchikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 39–45, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubenchikov, A.M., Bubenchikov, M.A., Potekaev, A.I. et al. The Effect of Graphene Shape on its Ability to Separate Gases. Russ Phys J 58, 1711–1719 (2016). https://doi.org/10.1007/s11182-016-0706-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0706-y

Keywords

Navigation