Skip to main content
Log in

Orientation Dependence of Functional Properties in Heterophase Single Crystals of the Ti36.5Ni51.0Hf12.5 and Ti48.5Ni51.5 Alloys

  • Published:
Russian Physics Journal Aims and scope

The features of orientation dependence of stress-induced thermoelastic B2–(R)–B19′-martensitic transformations in single crystals of the Ti48.5Ni51.5 and Ni51.0Ti36.5Hf12.5 (at.%) alloys, which contain disperse particles of the Ti3Ni4 and H-phase, respectively, are revealed along with those of their shape-memory effects (SME) and superelasticity (SE). It is experimentally demonstrated that irrespective of the crystal structure of disperse particles measuring more than 100 nm, for their volume fraction f > 16% there is a weaker orientation dependence of the reversible strain in the cases of manifestation of SME and SE. In the orientations of Class I, wherein martensitic detwinning introduces a considerable contribution into transformation strain, the values of SME |ε SME | and SE |ε SE | decrease by over a factor of two compared to the theoretical lattice strain value |ε tr0 | for a B2–B19′-transformation and the experimental values of reversible strain for quenched TiNi crystals. In the orientations of Class 2, wherein detwinning of the martensite is suppressed as is the case in quenched single-phase single crystals, the reversible strain is maintained close to its theoretical value |ε tr0 |. Micromechanical models of interaction between the martensite and the disperse particles are proposed, which account for the weaker orientation dependence of |ε SME | and |ε SE | due to suppression of detwinning of the B19′-martensite crystals by the particles and a transition from a single-variant evolution of the stress-induced martensitic transformations to a multiple-variant evolution of transformations in the cases of increased size of the particles and their larger volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka and X. Ren, Prog. Mater. Sci., 50, 511–678 (2005).

    Article  Google Scholar 

  2. V. G. Pushin, S. D. Prokoshkin, R. Z. Valiev, et al., Shape Memory Alloys. Part I. Structure, Phase Transformations and Properties [in Russian], UrB RAS (2006).

  3. V. E. Gunther, V. N. Khodorenko, Yu. F. Yasenchuk, et al., Titanium Nickelide. New-Generation Medical Material [in Russian], Tomsk, MITS Publ. (2006).

  4. S. M. Saghaian, H. E. Karaca, H. Tobe, et al., Acta Mater., 87, 128–141 (2015).

    Article  Google Scholar 

  5. B. C. Hornbuckle, T. T. Sasaki, G. S. Bigelow, et al., Mater. Sci. Eng. A, 637, 63–69 (2015).

    Article  Google Scholar 

  6. E. Yu. Panchenko, Yu. I. Chumlyakov, and H. J. Maier, Russ. Phys. J., 57, No. 8, 100–109 (2014).

    Article  Google Scholar 

  7. D. Angst, P. Thoma, and M. Kao, J. Phys. IV, 5, C8747–C8752 (1995).

    Google Scholar 

  8. X. L. Meng, W. Cai, F. Chen, and L. C. Zhao, Scripta Mater., 54, 1599–1604 (2006).

    Article  Google Scholar 

  9. F. Yang, D. R. Coughlin, P. J. Phillips, et al., Acta Mater., 61, 3335–3346 (2013).

    Article  Google Scholar 

  10. R. Santamarta, R. Arróyave, J. Pons, et al., Acta Mater., 61, 6191–6206 (2013).

    Article  Google Scholar 

  11. J. Zhang, W. Cai, X. Ren, et al., Mater. Trans. JIM, 40, No. 12, 1367–1375 (1999).

    Article  Google Scholar 

  12. J. Michutta, Ch. Somsen, A. Yawny, et al., Acta Mater., 54, 3525–3542 (2006).

    Article  Google Scholar 

  13. E. Yu. Panchenko, Yu. I. Chumlyakov, N. Yu. Surikov, et al., Pis’ma Zh. Tekh. Fiz., 41, Issue 16, 68–76 (2015).

    Google Scholar 

  14. Yu. I. Chumlyakov, I. V. Kireeva, I. Karaman, et al., Russ. Phys. J., 47, No. 9, 893–911 (2004).

    Article  Google Scholar 

  15. Y. I. Chumlyakov, I. V. Kireeva, E. Y. Panchenko, et al., Shape Memory Alloys: Properties, Technologies, Opportunities, Switzerland, Trans. Tech. Publications Ltd. (2015).

  16. H. Sehitoglu, J. Jun, X. Zhang, et al., Acta Mater., 49, 3609–3620 (2001).

    Article  Google Scholar 

  17. E. Panchenko, Y. Chumlyakov, H. J. Maier, et al., Intermetallics, 18, 2458–2463 (2010).

    Article  Google Scholar 

  18. E. Yu. Panchenko, Yu. I. Chumlyakov, H.J. Maier, et al., Russ. Phys. J., 55, No. 10, 11231131 (2013).

    Article  Google Scholar 

  19. A. P. Stebner, G. S. Bigelow, J. Yang, et al., Acta Mater., 76, 40–53 (2014).

    Article  Google Scholar 

  20. H. Sehitoglu, R. Hamilton, D. Canadinc, et al., Metall. Mat. Trans. A, 34, No. 5, 6–13 (2003).

    Google Scholar 

  21. S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, et al., Acta Mater., 52, 4479–4492 (2004).

    Article  Google Scholar 

  22. T. Waitz, V. Kazykhanov, and H. P. Karnthaler, Acta Mater., 52, 137–147 (2004).

    Article  Google Scholar 

  23. D. L. Beke, L. Daróczi, C. Lexcellent, and V. Mertinger, J. Phys. IV, 115, 279 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Panchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 47–55, November, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, E.Y., Chumlyakov, Y.I., Surikov, N.Y. et al. Orientation Dependence of Functional Properties in Heterophase Single Crystals of the Ti36.5Ni51.0Hf12.5 and Ti48.5Ni51.5 Alloys. Russ Phys J 58, 1534–1543 (2016). https://doi.org/10.1007/s11182-016-0679-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0679-x

Keywords

Navigation