Skip to main content
Log in

Influence of the Structure of the Titanium Oxide Coating Surface on Immunocompetent Tumor Cells

  • Published:
Russian Physics Journal Aims and scope

Results of a study of the properties of titanium oxide based coatings deposited on titanium substrates by microarc oxidation are presented that establish a relationship between physical and mechanical properties of the coating surface and their medical and biological properties. The required surface topography is formed by sandblasting of the substrate and is controlled by values of the roughness index Ra. A linear dependence of the amplitude of negative electrostatic potential of the oxide coating on the Ra value is established. The topography of the micro-arc coating surface determines its negative surface potential that apparently reduces the viability of the leukemia Т cells of the Jurkat line via electrostatic and biological mechanisms unrelated to the generation of intracellular reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GOST R ISO 10993-20-2009 Medical devices. Biological evaluation of medical devices. Part 20. Principles and methods for immunotoxocology testing of medical devices [In Russian], Standartinform, Moscow (2010).

  2. A. Au, J. Ha, M. Hernandez, et al. J. Biomed. Mater. Res., A79, No. 3, 512–521 (2006).

  3. X. Chen, J. Su, J. Chang, et al., Cancer Invest., 26, No. 7, 689–697 (2008).

    Article  Google Scholar 

  4. M. J. Stevens, L. J. Donato, S. K. Lower, and N. Sahai, Langmuir, 25, No. 11, 6270–6278 (2009); DOI: 10.1021/la8040192.

    Article  Google Scholar 

  5. M. Caicedo, J. J. Jacobs, A. Reddy, and N. J. Hallab, J. Biomed. Mater. Res., A86, No. 4, 905–913 (2008).

    Article  Google Scholar 

  6. S. Tuomela, R. Autio, T. Buerki-Thurnherr, et al., PLoS One, 8, No. 7, e68415 (2013); DOI: 10.1371/journal.pone.0068415.

    Article  ADS  Google Scholar 

  7. I. A. Khlusov, M. A. Surmeneva, R. A. Surmenev, et al., Byull. Sibirsk. Medits., No. 4, 78–85 (2012).

  8. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, eds., Biomaterials Science: an Introduction to Materials in Medicine, Elsevier Academic Press, San Diego (2004).

    Google Scholar 

  9. R. Thull, Z. Mitteilungen, Z. Mittelungen, 82, 39–45 (1992).

  10. T. Ogawa, Int. J. Oral. Maxillofac. Implants, 29, No. 1, e95-102 (2014); DOI: 10.11607/jomi.te47.

  11. Yu. Yu. Vecherskii, S. L. Andreev, V. F. Pichugin, and A. N. Dzyuman, Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 12/3, 86–90 (2013).

    Google Scholar 

  12. A. S. Curtis and M. Varde, J. Natl. Cancer Inst., 33, 15–26 (1964).

    Google Scholar 

  13. I. A. Khlusov, M. Yu. Khlusova, V. F. Pichugin, et al., Russ. Phys. J., 56, No. 10, 92–97 (2013).

    Google Scholar 

  14. C. Sarra-Bournet, B. Haberl, C. Charles, and R. Boswell, J. Phys., D44, 455202–455210 (2011).

    ADS  Google Scholar 

  15. R. Gago, A. Redondo-Cubero, M. Vinnichenko, et al., Mater. Chem. Phys., 136, 729–736 (2012).

    Article  Google Scholar 

  16. L. Hench and J. Jones, Biomaterials, Artificial Organs and Tissue Engineering, Woodhead Publishing: CRC Press, 286 (2005).

  17. M. E. Konishchev, O. S. Kuzmin, A. A. Pustovalova, et al., Russ. Phys. J., 56, No. 10, 1144–1149 (2013).

    Article  Google Scholar 

  18. E. V. Legostaeva, K. S. Kulyashova, E. G. Komarova, et al., Materialwissenschaft and Werkstofftechnik, 44, Nos. 2–3, 188–197 (2013); DOI 10.1002/mawe.201300107.

    Article  Google Scholar 

  19. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1994).

    Google Scholar 

  20. V. M. Sidorenko, Biofizika, 46, No. 3, 500–504 (2001)

    MathSciNet  Google Scholar 

  21. E. A. Gostishchev, Contactless method of determining potentials of the charged object surface and device for its realization, RF Patent No. 2223511, Bull. No. 4 (February 10, 2004).

  22. E. A. Gostishchev, R. A. Surmenev, I. A. Khlusov, and V. F. Pichugin, Bul. of the Tomsk Politekh. Univ., 319, No. 2, 108–113 (2011).

    Google Scholar 

  23. M. Eguchi, Phil. Mag, 49, 178 (1925).

    Article  Google Scholar 

  24. A. N. Gubkin, Electrets [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  25. A. V. Karlov, V. I. Vereshchagin, V. P. Shakhov, et al., Genii Ortopedii, No. 4, 28–33 (1999).

  26. V. S. Sedoi and V. V. Valevich, Pis’ma Zh. Tekh. Fiz., 25, No. 14, 81–84 (1999).

    Google Scholar 

  27. L. Ponsonnet, K. Reybier, N. Jaffrezic, et al., Mater. Sci. Eng., C23, 551–560 (2003).

    Article  Google Scholar 

  28. M. Ghosh, A. Chakraborty, and A. Mukherjee, J. Appl. Toxicol., 10, 1097–1110 (2013); DOI: 10.1002/jat.2863.

    Article  Google Scholar 

  29. K. Takaki, Y. Higuchi, M. Hashii, et al., J. Biosci. Bioeng., 117, No. 1, 129–133 (2014); DOI: 10.1016/j.jbiosc.2013.06.003.

    Article  Google Scholar 

  30. K. Montet-Abou, X. Montet, R. Weissleder, and L. Josephson, Mol. Imaging, 4, No. 3, 165–171 (2005).

    Google Scholar 

  31. G. Tobasnick and A. S. G. Curtis, Eur. Cells Mater., 2, 49–61 (2001).

    Google Scholar 

  32. M. J. Stevens, L. J. Donato, S. K. Lower, and N. Sahai, Langmuir, 25, No. 11, 6270–5278 (2009); DOI: 10.1021/la8040192.

    Article  Google Scholar 

  33. V. T. Podorozhnaya, M. A. Sadovoi, I. A. Kirillova, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 12/3, 14–20 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Khlusov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 40–46, November, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlusov, I.A., Sharkeev, Y.P., Pichugin, V.F. et al. Influence of the Structure of the Titanium Oxide Coating Surface on Immunocompetent Tumor Cells. Russ Phys J 58, 1527–1533 (2016). https://doi.org/10.1007/s11182-016-0678-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0678-y

Keywords

Navigation