Skip to main content
Log in

Phase and Structural States Formed in Titanium Nickelide Subsurface Layers Exposed to High-Current Pulsed Electron Beams

  • Published:
Russian Physics Journal Aims and scope

The behavior of the non-equilibrium states formed in the subsurface layers of a titanium nickelide-based alloy exposed to electron beams operated in the pulsed surface layer melting mode is investigated experimentally. Using methods of an x-ray diffraction analysis, and optical, scanning, and transmission electron microscopies, an 8–10 μm thick surface layer is shown to exhibit В2 phase-based structure undergoing inhomogeneous lattice microstrain. The core layer located at a depth of 10–20 μm below the irradiated surface contains a small amount (up to 5 vol.%) of a phase with В19′ martensite structure along with a slightly distorted lattice and unmelted Ti2Ni phase particles. Electron beam treatment brings about changes in the chemical composition of the surface-modified layer which becomes enriched in titanium owing to the dissolution of the Ti2Ni phase particles therein. Transmission electron microscopy has not revealed martensite phases in the modified layer. The electron beam exposure of the titanium nickelide surface is assumed to give rise to nonequilibrium highly distorted bcc structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Boiko, A. N. Valyaev, and A. D. Pogrebnyak, Physics-Uspekhi, 42, No. 11, 1139–1166 (1999).

    Article  ADS  Google Scholar 

  2. A. I. Lotkov et al., Surface Nanoengineering. Formation of Nonequilibrium States in Surface Layers of Materials by Methods of Electron-Ion-Plasma Technologies [in Russian], Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2008).

    Google Scholar 

  3. K. M. Zhang, J. X. Zou, T. Grosdidier, et al., J. Alloys Compounds, 434–435, 682–685 (2007).

    Article  Google Scholar 

  4. L. L. Meisner, Fiz. Mezomekh., 7, Spec. Iss. No. 2, 169–172 (2004).

  5. L. L. Meisner, A. I. Lotkov, Yu. P. Mironov, and A. A. Neyman, J. Nanotech., 2010, 8 (2010).

    Article  Google Scholar 

  6. V. V. Uglov, A. K. Kuleshov, E. A. Soldatenko, et al., Surf. Coat. Technol., 206, Nos. 11–12, 2972–2976 (2012).

    Article  Google Scholar 

  7. T. Grosdidier, J. X. Zou, B. Bolle, et al., J. Alloys Compounds, 504, 508–511 (2010.

    Article  Google Scholar 

  8. Yu. F. Ivanov, N. N. Koval, S. V. Gorbunov. et al., Russ. Phys., J., 54, No. 5, 575–583 (2011).

    Article  Google Scholar 

  9. A. A. Neyman, S. N. Meisner, A. I. Lotkov, and L. L. Meisner, Perspektiv. Mater., 2, Spec. Iss. 429–431, (2007).

  10. Takayuki Yoneyama and Shuichi Miyazaki, Shape Memory Alloys for Biomedical Applications, CRC Press, Cambridge, England (2009).

    Book  Google Scholar 

  11. L. L. Meisner, A. I. Lotkov, V. P. Sivokha, et al., Fiz. Khim. Obrab. Mater., No. 1, 78–84 (2004).

  12. L. L. Meisner, I. V. Nikonova, A. I. Lotkov, et al., Perspektiv. Mater., No. 3, 15–27 (2011).

    Google Scholar 

  13. L. L. Meisner, A. I. Lotkov, V. P. Rotshtein, et al., Fiz. Khim. Obrab. Mater., No. 4, 36–43 (2011).

  14. L. I. Mirkin, A Handbook of X-Ray Diffraction Analysis of Polycrystals [in Russian], GIFML, Moscow (1961).

    Google Scholar 

  15. N. I. Il’inykh, T. V. Kulikova, and G. K. Moiseev, The Composition and Equilibrium Characteristics of Metallic Melts of Binary Systems Based on Iron, Nickel, and Aluminum, UrO RAN, Yekaterinburg (2006).

    Google Scholar 

  16. I. I. Kornilov, O. K. Belousov, and E. V. Kachur, Titanium Nickelide and Other Shape-Memory Alloys [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  17. V. N. Grishkov and A. I. Lotkov, Fiz. Met. Materialoved., 60, No. 2, 351–355 (1985).

    Google Scholar 

  18. L. L. Meisner, A. I. Lotkov, M. G. Ostapenko, and E. Yu. Gudimova, Fiz. Mezomekh., 15. No. 3, 79–89 (2012).

    Google Scholar 

  19. L. L. Meisner, A. I. Lotkov, M. G. Ostapenko, and E. Yu. Gudimova, Appl. Surf. Sci., No. 280. 398–404 (2013).

  20. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, Radiographic and Electron Optical Analysis [in Russian], MISiS, Moscow (1994).

    Google Scholar 

  21. V. P. Rotshtein, R. Guntsel’, A. B. Markov, et al., Fiz. Khim. Obrab. Mater., No., 1, 62–72 (2006).

  22. Yu. F. Ivanov, Yu. A. Kolubaeva, and V. Ye. Ovcharenko, Izv. Tomsk Polytekh. Univ., 313, No., 3, 93–95 (2008).

    Google Scholar 

  23. The Action of High-Power Radiation on Metals, S. I. Anisimov, G. S. Imas, and G. S. Romanova, eds. [in Russian], Nauka, Moscow (1970).

  24. A. Taylor, X-ray Metallography, J. Wiley & Sons, New York (1961).

    Google Scholar 

  25. U. Welzel, J. Ligot, P. Lamparter, et al., Diffraction Analysis of Residual Stress, Universitat Stuttgard (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to А. А. Neyman.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 103–112, February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neyman, А.А., Meisner, L.L., Lotkov, A.I. et al. Phase and Structural States Formed in Titanium Nickelide Subsurface Layers Exposed to High-Current Pulsed Electron Beams. Russ Phys J 58, 255–265 (2015). https://doi.org/10.1007/s11182-015-0490-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0490-0

Keywords

Navigation