Skip to main content
Log in

Evolution of the Structure and Grain Boundary Misorientation Spectrum of Submicrocrystalline Nickel in the Process of Annealing and Deformation

  • Published:
Russian Physics Journal Aims and scope

Methods of electron microscopy and electron backscatter diffraction are used to investigate the influence of annealing and low deformations (up to 20%) on the structure and grain boundary misorientation spectrum of submicrocrystalline nickel. It is established that the relative fraction of high-angle grain boundaries in grainboundary ensemble of submicrocrystalline nickel increases in the process of annealing mainly due to the formation of annealing twins. A dependence of the evolution of the structure and spectrum of misorientation boundaries of nickel grains in the course of deformation on the deformation mechanism is demonstrated. Under conditions of creep, the development of grain boundary sliding promotes preservation of submicrocrystalline structure and increase in the relative fraction of high-angle grain boundaries in the grain boundary nickel ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. V. Kopetskii, A. N. Orlov, and L. K. Fionova, Grain Boundaries in Pure Metals [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Metal Properties [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  3. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  4. Z. W. Wang, Y. B. Wang, X. Z. Liao, еt al., Scripta Mater., 60, 52–55 (2009)

    Article  Google Scholar 

  5. L. C. Lim and T. Watanabe, Acta Metall. Mater., 38, No. 12, 2507–2516 (1990).

    Article  Google Scholar 

  6. V. E. Panin, V. M. Fomin, and V. M. Titov, Fizich. Mesomekh., 6, No. 2, 5–14 (2003).

    Google Scholar 

  7. J. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  8. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys [in Russian], Publishing House of the Ural Division of the Russian Academy of Sciences, Ekaterinburg (2003).

    Google Scholar 

  9. A. A. Lukhvich, Influence of Defects on the Electric Properties of Metals [in Russian], Nauka i Tekhnika, Minsk (1976).

    Google Scholar 

  10. I. P. Mishin and G. P. Grabovetskaya, Russ. Phys. J., 55, No. 1, 92–98 (2012).

    Article  Google Scholar 

  11. Yu. P. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, and N. V. Girsova, Fiz. Met. Metalloved., 90, No. 5, 105–109 (2001).

    Google Scholar 

  12. E. F. Dudarev, G. P. Pochivalova, Yu. R. Kolobov, et al., Russ. Phys. J., 47, No. 6, 617–625 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Grabovetskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 92–97, February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovetskaya, G.P., Mishin, I.P. & Ratochka, I.V. Evolution of the Structure and Grain Boundary Misorientation Spectrum of Submicrocrystalline Nickel in the Process of Annealing and Deformation. Russ Phys J 58, 242–248 (2015). https://doi.org/10.1007/s11182-015-0488-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0488-7

Keywords

Navigation