Skip to main content
Log in

Thermophoresis of Graphene Plates

  • Published:
Russian Physics Journal Aims and scope

Thermophoresis of graphene plates in an air medium is discussed within the framework of a molecular-kinetic approach. Its rate is found to be independent of the plate area and the aspect ratio of a rectangular graphene. It does depend on the plate orientation in space, which is controlled by the principle of least resistance. The dependence is expressed via a geometrical parameter σ, whose limiting values within the variation interval are found to be 0.46 and 0.65. A solution of the Euler problem on the Brownian rotation of a plate around its center of mass as a result of collisions of molecules in the temperature gradient field allowed us to obtain for the graphene plates a statistical average of σ =0.5. This value turned out to be the same as the one for spherical nanoparticles, for which rotations are irrelevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Potekaev and M. A. Bubenchikov, Russ. Phys. J., 54, No. 2, 211–220 (2011).

    Article  MATH  Google Scholar 

  2. A. I. Potekaev, A. M. Bubenchikov, and M. A. Bubenchikov, Russ. Phys. J., 55, No. 12, 1434–1443 (2013).

    Article  MathSciNet  Google Scholar 

  3. M. A. Bubenchikov, A. M. Bubenchikov, and A. I. Potekaev, Russ. Phys. J., 56, No. 3, 341–348 (2013).

    Article  MathSciNet  Google Scholar 

  4. A. M. Bubenchikov, A. I. Potekaev, M. A. Bubenchikov, et al., Adv. Nanopart., 3, 1–5 (2014).

    Article  Google Scholar 

  5. M. A. Bubenchikov, A. M. Bubenchikov, and A. I. Potekaev, Russ. Phys. J., 56, No. 7, 785–790 (2013).

    Article  MathSciNet  Google Scholar 

  6. M. A. Bubenchikov, A. M. Bubenchikov, and A. I. Potekaev, et al., Russ. Phys. J., 57, No. 6, 740–744 (2014).

    Article  Google Scholar 

  7. V. Y. Rudyak and S. L. Krasnolutskii, J. Aeros. Sci., 34, Suppl. 1 (2003).

  8. L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech., 12, No. 101, 737–758 (1980).

    Article  ADS  Google Scholar 

  9. J. O. Hirschfelder and C. F. Curtiss, The Molecular Theory of Gases and Liquids, John Wiley, New York (1954).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bubenchikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 87–92, July, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubenchikov, A.M., Bubenchikov, M.A., Potekaev, A.I. et al. Thermophoresis of Graphene Plates. Russ Phys J 57, 956–962 (2014). https://doi.org/10.1007/s11182-014-0330-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0330-7

Keywords

Navigation